Abstract
The generation of a phenotypic diversity that is coherent across a bacterial population is a fundamental problem. We propose here that the DNA strand-specific segregation of certain nucleoid-associated proteins or NAPs results in these proteins being asymmetrically distributed to the daughter cells. We invoke a variety of mechanisms as responsible for this asymmetrical segregation including those based on differences between the leading and lagging strands, post-translational modifications, oligomerisation and association with membrane domains.
Similar content being viewed by others
References
Adams DW, Wu LJ, Errington J (2015) Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. EMBO J 34:491–501. https://doi.org/10.15252/embj.201490177
Ali SS, Whitney JC, Stevenson J, Robinson H, Howell PL, Navarre WW (2013) Structural insights into the regulation of foreign genes in Salmonella by the Hha/H-NS complex. J Biol Chem 288:13356–13369. https://doi.org/10.1074/jbc.M113.455378
Arias-Cartin R, Dobihal GS, Campos M, Surovtsev IV, Parry B, Jacobs-Wagner C (2017) Replication fork passage drives asymmetric dynamics of a critical nucleoid-associated protein in caulobacter. EMBO J 36:301–318. https://doi.org/10.15252/embj.201695513
Arold ST, Leonard PG, Parkinson GN, Ladbury JE (2010) H-NS forms a superhelical protein scaffold for DNA condensation. Proc Natl Acad Sci USA 107:15728–15732. https://doi.org/10.1073/pnas.1006966107
Balandina A, Kamashev D, Rouviere-Yaniv J (2002) The bacterial histone-like protein HU specifically recognizes similar structures in all nucleic acids DNA, RNA, and their hybrids. J Biol Chem 277:27622–27628. https://doi.org/10.1074/jbc.M201978200
Berger M, Gerganova V, Berger P, Rapiteanu R, Lisicovas V, Dobrindt U (2016) Genes on a wire: the nucleoid-associated protein HU insulates transcription units in E. coli. Sci Rep 6:31512. https://doi.org/10.1038/srep31512
Bettridge K, Verma S, Weng X, Adhya S, Xiao J (2019) Single molecule tracking reveals the role of transitory dynamics of nucleoid-associated protein HU in organizing the bacterial chromosome. bioRXiv. https://doi.org/10.1101/2019.12.31.725226
Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R (2018) StpA and Hha stimulate pausing by RNA polymerase by promoting DNA–DNA bridging of H-NS filaments. Nucleic Acids Res 46:5525–5546. https://doi.org/10.1093/nar/gky265
Bracha D et al (2018) Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175(1467–1480):e1413. https://doi.org/10.1016/j.cell.2018.10.048
Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13:773–780. https://doi.org/10.1016/j.mib.2010.09.013
Broyles SS, Pettijohn DE (1986) Interaction of the E. coli HU protein with DNA: evidence for formation of nucleosome-like structures with altered DNA helical pitch. J Mol Biol 187:47–60. https://doi.org/10.1016/0022-2836(86)90405-5
Casadesus J, Low DA (2013) Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem 288:13929–13935. https://doi.org/10.1074/jbc.R113.472274
Castaing B, Zelwer C, Laval J, Boiteux S (1995) HU protein of E. coli binds specifically to DNA that contains single-strand breaks or gaps. J Biol Chem 270:10291–10296. https://doi.org/10.1074/jbc.270.17.10291
Castellana M et al (2014) Enzyme clustering accelerates processing of intermediates through metabolic channelling. Nat Biotechnol 32:1011–1018. https://doi.org/10.1038/nbt.3018
Ceschini S, Lupidi G, Coletta M, Pon CL, Fioretti E, Angeletti M (2000) Multimeric self-assembly equilibria involving the histone-like protein H-NS: a thermodynamic study. J Biol Chem 275:729–734. https://doi.org/10.1074/jbc.275.2.729
Claret L, Rouviere-Yaniv J (1997) Variation in HU composition during growth of E. coli: the heterodimer is required for long term survival. J Mol Biol 273:93–104. https://doi.org/10.1006/jmbi.1997.1310
Datta C, Jha RK, Ahmed W, Ganguly S, Ghosh S, Nagaraja V (2019) Physical and functional interaction between nucleoid-associated proteins HU and Lsr2 of Mycobacterium tuberculosis: altered DNA binding and gene regulation. Mol Microbiol 111:981–994. https://doi.org/10.1111/mmi.14202
Dattoli AA, Carty BL, Kochendoerfer AM, Morgan C, Walshe AE, Dunleavy EM (2020) Asymmetric assembly of centromeres epigenetically regulates stem cell fate. J Cell Biol. https://doi.org/10.1083/jcb.201910084
Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195. https://doi.org/10.1038/nrmicro2261
Ditlev JA, Case LB, Rosen MK (2018) Who’s in and who’s out-compositional control of biomolecular condensates. J Mol Biol 430:4666–4684. https://doi.org/10.1016/j.jmb.2018.08.003
El Najjar N et al (2020) Chromosome segregation in B. subtilis follows an overall pattern of linear movement and is highly robust against cell cycle perturbations. mSphere. https://doi.org/10.1128/mSphere.00255-20
Escobar TM, Oksuz O, Saldana-Meyer R, Descostes N, Bonasio R, Reinberg D (2019) Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell 179:953–963. https://doi.org/10.1016/j.cell.2019.10.009
Freestone P, Grant S, Trinei M, Onoda T, Norris V (1998) Protein phosphorylation in E. coli L. form NC-7. Microbiology 144(12):3289–3295. https://doi.org/10.1099/00221287-144-12-3289
Gangwe Nana GY et al (2018) Division-based, growth rate diversity in bacteria. Front Microbiol 9:849. https://doi.org/10.3389/fmicb.2018.00849
Ghosh S, Padmanabhan B, Anand C, Nagaraja V (2016) Lysine acetylation of the Mycobacterium tuberculosis HU protein modulates its DNA binding and genome organization. Mol Microbiol 100:577–588. https://doi.org/10.1111/mmi.13339
Grainger DC, Hurd D, Goldberg MD, Busby SJ (2006) Association of nucleoid proteins with coding and non-coding segments of the E. coli genome. Nucleic Acids Res 34:4642–4652. https://doi.org/10.1093/nar/gkl542
Guo F, Adhya S (2007) Spiral structure of E. coli Huαβ provides foundation for DNA supercoiling. Proc Natl Acad Sci USA 104:4309–4314. https://doi.org/10.1073/pnas.0611686104
Guo MS, Haakonsen DL, Zeng W, Schumacher MA, Laub MT (2018) A bacterial chromosome structuring protein binds overtwisted DNA to stimulate type II topoisomerases and enable DNA replication. Cell 175:583–597. https://doi.org/10.1016/j.cell.2018.08.029
Gupta M et al (2014) HupB, a nucleoid-associated protein of Mycobacterium tuberculosis, is modified by serine/threonine protein kinases in vivo. J Bacteriol 196:2646–2657. https://doi.org/10.1128/JB.01625-14
Hammel M et al (2016) HU multimerization shift controls nucleoid compaction. Sci Adv 2:e1600650. https://doi.org/10.1126/sciadv.1600650
Hanna ES, Roque-Barreira MC, Mendes GM, Soares SG, Brocchi M (2008) Cloning, expression and purification of a glycosylated form of the DNA-binding protein Dps from Salmonella enterica Typhimurium. Protein Expr Purif 59:197–202. https://doi.org/10.1016/j.pep.2008.01.015
Higashi K et al (2016) H-NS facilitates sequence diversification of horizontally transferred DNAs during their integration in host chromosomes. PLoS Genet 12:e1005796. https://doi.org/10.1371/journal.pgen.1005796
Hondele M, Heinrich S, De Los Rios P, Weis K (2020) Membraneless organelles: phasing out of equilibrium. Emerg Top Life Sci. https://doi.org/10.1042/ETLS20190190
Hu L, Kong W, Yang D, Han Q, Guo L, Shi Y (2019) Threonine phosphorylation fine-tunes the regulatory activity of histone-like nucleoid structuring protein in Salmonella transcription. Front Microbiol 10:1515. https://doi.org/10.3389/fmicb.2019.01515
Japaridze A, Renevey S, Sobetzko P, Stoliar L, Nasser W, Dietler G, Muskhelishvili G (2017) Spatial organization of DNA sequences directs the assembly of bacterial chromatin by a nucleoid-associated protein. J Biol Chem 292:7607–7618. https://doi.org/10.1074/jbc.M117.780239
Joshi MC, Magnan D, Montminy TP, Lies M, Stepankiw N, Bates D (2013) Regulation of sister chromosome cohesion by the replication fork tracking protein SeqA. PLoS Genet 9:e1003673. https://doi.org/10.1371/journal.pgen.1003673
Junier I, Martin O, Kepes F (2010) Spatial and topological organization of DNA chains induced by gene co-localization. PLoS Comput Biol 6:e1000678. https://doi.org/10.1371/journal.pcbi.1000678
Kaguni JM (2018) The macromolecular machines that duplicate the E. coli chromosome as targets for drug discovery. Antibiotics (Basel). https://doi.org/10.3390/antibiotics7010023
Kamashev D, Balandina A, Rouviere-Yaniv J (1999) The binding motif recognized by HU on both nicked and cruciform DNA. EMBO J 18:5434–5444. https://doi.org/10.1093/emboj/18.19.5434
Kojima T, Takayama S (2018) Membraneless compartmentalization facilitates enzymatic cascade reactions and reduces substrate inhibition. ACS Appl Mater Interfaces 10:32782–32791. https://doi.org/10.1021/acsami.8b07573
Kumar M, Mommer MS, Sourjik V (2010) Mobility of cytoplasmic, membrane, and DNA-binding proteins in E. coli. Biophys J 98:552–559. https://doi.org/10.1016/j.bpj.2009.11.002
Kuwada NJ, Traxler B, Wiggins PA (2015) Genome-scale quantitative characterization of bacterial protein localization dynamics throughout the cell cycle. Mol Microbiol 95:64–79. https://doi.org/10.1111/mmi.12841
Lang KS, Merrikh H (2018) The clash of macromolecular titans: replication-transcription conflicts in bacteria. Annu Rev Microbiol 72:71–88. https://doi.org/10.1146/annurev-micro-090817-062514
Laurent M, Charvin G, Guespin-Michel J (2005) Bistability and hysteresis in epigenetic regulation of the lactose operon. Since Delbruck, a long series of ignored models. Cell Mol Biol 51:583–594
Lechene C et al (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5:20
Legent G et al (2008) Method for macromolecular colocalization using atomic recombination in dynamics SIMS. J Phys Chem B 112:5534–5546
Lele T, Wagner SR, Nickerson JA, Ingber DE (2006) Methods for measuring rates of protein binding to insoluble scaffolds in living cells: histone H1-chromatin interactions. J Cell Biochem 99:1334–1342. https://doi.org/10.1002/jcb.20997
Levin M, Klar AJ, Ramsdell AF (2016) Introduction to provocative questions in left–right asymmetry. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2015.0399
Lim CJ, Whang YR, Kenney LJ, Yan J (2012) Gene silencing H-NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 40:3316–3328. https://doi.org/10.1093/nar/gkr1247
Lopez-Vernaza MA, Leach DR (2013) Symmetries and asymmetries associated with non-random segregation of sister DNA strands in E. coli. Semin Cell Dev Biol 24:610–617. https://doi.org/10.1016/j.semcdb.2013.05.010
Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J Chem Phys 51:924–933
Margolin W (2012) The price of tags in protein localization studies. J Bacteriol 194:6369–6371. https://doi.org/10.1128/JB.01640-12
Marinus MG, Lobner-Olesen A (2014) DNA methylation. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0003-2013
Merrikh H (2017) Spatial and temporal control of evolution through replication–transcription conflicts. Trends Microbiol 25:515–521. https://doi.org/10.1016/j.tim.2017.01.008
Mika JT, Vanhecke A, Dedecker P, Swings T, Vangindertael J, Van den Bergh B, Michiels J, Hofkens J (2015) A study of SeqA subcellular localization in Escherichia coli using photo-activated localization microscopy. Faraday Discuss 184:425–450
Monterroso B et al (2019a) The bacterial DNA binding protein MatP involved in linking the nucleoid terminal domain to the divisome at midcell interacts with lipid membranes. MBio. https://doi.org/10.1128/mBio.00376-19
Monterroso B et al (2019b) Bacterial FtsZ protein forms phase-separated condensates with its nucleoid-associated inhibitor SlmA. EMBO Rep. https://doi.org/10.15252/embr.201845946
Muller-Hill B (1998) The function of auxiliary operators. Mol Microbiol 29:13–18
Noom MC, Navarre WW, Oshima T, Wuite GJ, Dame RT (2007) H-NS promotes looped domain formation in the bacterial chromosome. Curr Biol 17:R913-914. https://doi.org/10.1016/j.cub.2007.09.005
Norris V (1995) Hypothesis: chromosome separation in E. coli involves autocatalytic gene expression, transertion and membrane-domain formation. Mol Microbiol 16:1051–1057
Norris V (2019) Does the semiconservative nature of DNA replication facilitate coherent phenotypic diversity? J Bacteriol. https://doi.org/10.1128/JB.00119-19
Norris V, Kepes F, Amar P, Koch I, Janniere L (2017) Hypothesis: local variations in the speed of individual DNA replication forks determine the phenotype of daughter cells. Med Res Arch 5:1–18
Norris V, Madsen MS (1995) Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model. J Mol Biol 253:739–748. https://doi.org/10.1006/jmbi.1995.0587
Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA 43:553–566. https://doi.org/10.1073/pnas.43.7.553
Omont N, Kepes F (2004) Transcription/replication collisions cause bacterial transcription units to be longer on the leading strand of replication. Bioinformatics 20:2719–2725. https://doi.org/10.1093/bioinformatics/bth317
Oosawa F (1971) Polyelectrolytes. Dekker, New York
Pillon MC, Babu VM, Randall JR, Cai J, Simmons LA, Sutton MD, Guarne A (2015) The sliding clamp tethers the endonuclease domain of MutL to DNA. Nucleic Acids Res 43:10746–10759. https://doi.org/10.1093/nar/gkv918
Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P (2010) PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc Natl Acad Sci USA 107:16066–16071. https://doi.org/10.1073/pnas.1010662107
Poudyal RR, Keating CD, Bevilacqua PC (2019) Polyanion-assisted ribozyme catalysis inside complex coacervates. ACS Chem Biol 14:1243–1248. https://doi.org/10.1021/acschembio.9b00205
Qian Z, Zhurkin VB, Adhya S (2017) DNA-RNA interactions are critical for chromosome condensation in E. coli. Proc Natl Acad Sci USA 114:12225–12230. https://doi.org/10.1073/pnas.1711285114
Rajendram M et al (2015) Anionic phospholipids stabilize RecA filament bundles in E. coli. Mol Cell 60:374–384. https://doi.org/10.1016/j.molcel.2015.09.009
Ranjan R, Snedeker J, Chen X (2019) Asymmetric centromeres differentially coordinate with mitotic machinery to ensure biased sister chromatid segregation in germline stem cells. Cell Stem Cell 25:666–681. https://doi.org/10.1016/j.stem.2019.08.014
Reusch R, Shabalin O, Crumbaugh A, Wagner R, Schroder O, Wurm R (2002) Posttranslational modification of E. coli histone-like protein H-NS and bovine histones by short-chain poly-(R)-3-hydroxybutyrate (cPHB). FEBS Lett 527:319–322
Reveron-Gomez N et al (2018) Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol Cell 72:239–249. https://doi.org/10.1016/j.molcel.2018.08.010
Ripoll C, Norris V, Thellier M (2004) Ion condensation and signal transduction. BioEssays 26:549–557. https://doi.org/10.1002/bies.20019
Robles-Ramos MA, Margolin W, Sobrinos-Sanguino M, Alfonso C, Rivas G, Monterroso B, Zorrilla S (2020) The Nucleoid Occlusion Protein SlmA Binds to Lipid Membranes. mBio 11(5)
Rocha EP, Fralick J, Vediyappan G, Danchin A, Norris V (2003) A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 49:895–903
Sakatos A et al (2018) Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. Sci Adv. https://doi.org/10.1126/sciadv.aao1478
Sanchez-Romero MA, Molina F, Jimenez-Sanchez A (2010) Correlation between ribonucleoside-diphosphate reductase and three replication proteins in E. coli. BMC Mol Biol 11:11
Shin Y et al (2018) Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175(1481–1491):e1413. https://doi.org/10.1016/j.cell.2018.10.057
Spurio R, Falconi M, Brandi A, Pon CL, Gualerzi CO (1997) The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J 16:1795–1805. https://doi.org/10.1093/emboj/16.7.1795
Stracy M et al (2019) Single-molecule imaging of DNA gyrase activity in living E. coli. Nucleic Acids Res 47:210–220. https://doi.org/10.1093/nar/gky1143
Ueguchi C, Seto C, Suzuki T, Mizuno T (1997) Clarification of the dimerization domain and its functional significance for the E. coli nucleoid protein H-NS. J Mol Biol 274:145–151. https://doi.org/10.1006/jmbi.1997.1381
van Noort J, Verbrugge S, Goosen N, Dekker C, Dame RT (2004) Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc Natl Acad Sci USA 101:6969–6974. https://doi.org/10.1073/pnas.0308230101
Wang W, Li GW, Chen C, Xie XS, Zhuang X (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333:1445–1449. https://doi.org/10.1126/science.1204697
Wery M, Woldringh CL, Rouviere-Yaniv J (2001) HU-GFP and DAPI co-localize on the E. coli nucleoid. Biochimie 83:193–200. https://doi.org/10.1016/s0300-9084(01)01254-8
Wiggins PA, Dame RT, Noom MC, Wuite GJ (2009) Protein-mediated molecular bridging: a key mechanism in biopolymer organization. Biophys J 97:1997–2003. https://doi.org/10.1016/j.bpj.2009.06.051
Will WR, Whitham PJ, Reid PJ, Fang FC (2018) Modulation of H-NS transcriptional silencing by magnesium. Nucleic Acids Res 46:5717–5725. https://doi.org/10.1093/nar/gky387
Winardhi RS, Yan J, Kenney LJ (2015) H-NS regulates gene expression and compacts the nucleoid: insights from single-molecule experiments. Biophys J 109:1321–1329. https://doi.org/10.1016/j.bpj.2015.08.016
Woldringh CL (2002) The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 45:17–29. https://doi.org/10.1046/j.1365-2958.2002.02993.x
Wu F, Japaridze A, Zheng X, Wiktor J, Kerssemakers JWJ, Dekker C (2019) Direct imaging of the circular chromosome in a live bacterium. Nat Commun 10:2194. https://doi.org/10.1038/s41467-019-10221-0
Zhang W, Zhou Y, Becker DF (2004) Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction. Biochemistry 43:13165–13174. https://doi.org/10.1021/bi048596g
Zhu Y, Mohapatra S, Weisshaar JC (2019) Rigidification of the E. coli cytoplasm by the human antimicrobial peptide LL-37 revealed by super resolution fluorescence microscopy. Proc Natl Acad Sci USA 116:1017–1026. https://doi.org/10.1073/pnas.1814924116
Acknowledgements
We thank Itzhak Fishov and Christine Jacobs-Wagner for very helpful comments, James Weisshaar for encouragement, and the reviewers for insightful criticisms.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Konto-Ghiorghi, Y., Norris, V. Hypothesis: nucleoid-associated proteins segregate with a parental DNA strand to generate coherent phenotypic diversity. Theory Biosci. 140, 17–25 (2021). https://doi.org/10.1007/s12064-020-00323-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12064-020-00323-5