Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Unions, intersections and a one-shot quantum joint typicality lemma

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

A fundamental tool to prove inner bounds in classical network information theory is the so-called ‘conditional joint typicality lemma’. In addition to the lemma, one often uses unions and intersections of typical sets in the inner bound arguments without so much as giving them a second thought. These arguments do not work in the quantum setting. This bottleneck shows up in the fact that so-called ‘simultaneous decoders’, as opposed to ‘successive cancellation decoders’, are known for very few channels in quantum network information theory. Another manifestation of this bottleneck is the lack of so-called ‘simultaneous smoothing’ theorems for quantum states. In this paper, we overcome the bottleneck by proving for the first time a one-shot quantum joint typicality lemma with robust union and intersection properties. To do so we develop two novel tools in quantum information theory, which may be of independent interest. The first tool is a simple geometric idea called tilting, which increases the angles between a family of subspaces in orthogonal directions. The second tool, called smoothing and augmentation, is a way of perturbing a multipartite quantum state such that the partial trace over any subset of registers does not increase the operator norm much. Our joint typicality lemma allows us to construct simultaneous quantum decoders for many multiterminal quantum channels. It provides a powerful tool to extend many results in classical network information theory to the one-shot quantum setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. El Gamal A and Kim Y H 2012 Network information theory. Cambridge, U.K.: Cambridge University Press

    Google Scholar 

  2. Shannon C 1948 A mathematical theory of communication. Bell System Technical Journal 27: 379–423, 623–656

    Article  MathSciNet  Google Scholar 

  3. Deutsch D 1985 Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London Series A 400: 97–117

    MathSciNet  MATH  Google Scholar 

  4. Holevo A 1973 Bounds for the quantity of information transmitted by a quantum communication channel. Problems of Information Transmission 9: 177–183

    Google Scholar 

  5. Shor P 1997 Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26: 1484–1509

    Article  MathSciNet  Google Scholar 

  6. Holevo A 1998 The capacity of the quantum channel with general signal states. IEEE Transactions on Information Theory 44: 269–273

  7. Schumacher B and Westmoreland M 1997 Sending classical information via noisy quantum channels. Physical Review A 56: 131–138

  8. Wang L and Renner R 2012 One-shot classical–quantum capacity and hypothesis testing. Physical Review Letters 108: 2005:1–2005:5

  9. Winter A 2001 The capacity of the quantum multiple-access channel. IEEE Transactions on Information Theory 47: 3059–3065

    Article  MathSciNet  Google Scholar 

  10. Sen P 2012 Achieving the Han–Kobayashi inner bound for the quantum interference channel. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 736–740, full version at arXiv:1109.0802

  11. Sen P 2018 Inner bounds via simultaneous decoding in quantum network information theory. arXiv:1806.07276

  12. Belavkin V 1975 Optimal multiple quantum statistical hypothesis testing. Stochastics 1: 315–345

    Article  MathSciNet  Google Scholar 

  13. Belavkin V 1975 Radiotekhnika i Electronika 20: 1177–1185 English translation: 1975 Optimal distinction of non-orthogonal quantum signals. Radio Engineering and Electronic Physics 20: 39–47

    Google Scholar 

  14. Hayashi M and Nagaoka H 2003 General formulas for capacity of classical–quantum channels. IEEE Transactions on Information Theory 49: 1753–1768

    Article  MathSciNet  Google Scholar 

  15. Gao J 2015 Quantum union bounds for sequential projective measurements. Physical Review A 92: 052331:1–052331:6

  16. Oskouei S, Mancini S and Wilde M 2019 Union bound for quantum information processing. Proceedings of the Royal Society A 475: 20180612:1–20180612:19

  17. Fawzi O, Hayden P, Savov I, Sen P and Wilde M 2012 Classical communication over a quantum interference channel. IEEE Transactions on Information Theory 58: 3670–3691

  18. Xu S and Wilde M 2013 Sequential, successive, and simultaneous decoders for entanglement-assisted classical communication. Quantum Information Processing 12: 641–683

  19. Qi H, Wang Q and Wilde M 2018 Applications of position-based coding to classical communication over quantum channels. Journal of Physics A: Mathematical and Theoretical 51: 444002:1–444002:42

  20. Dutil N 2011 Multiparty quantum protocols for assisted entanglement distillation. PhD Thesis, McGill University, Montréal, Canada. Also arXiv:1105.4657

  21. Drescher L and Fawzi O 2013 On simultaneous min-entropy smoothing. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 161–165

  22. Berta M, Brandão F and Hirche C 2017 On composite quantum hypothesis testing. arXiv:1709.07268

  23. Buscemi F and Datta N 2010 The quantum capacity of channels with arbitrarily correlated noise. IEEE Transactions on Information Theory 56: 1447–1460

    Article  MathSciNet  Google Scholar 

  24. Brandão F and Datta N 2011 One-shot rates for entanglement manipulation under non-entangling maps. IEEE Transactions on Information Theory 57: 1754–1760

    Article  MathSciNet  Google Scholar 

  25. Anshu A, Jain R and Warsi N 2019 A hypothesis testing approach for communication over entanglement-assisted compound quantum channel. IEEE Transactions on Information Theory 65: 2623–2636

    Article  MathSciNet  Google Scholar 

  26. Harrow A, Lin C and Montanaro A 2017 Sequential measurements, disturbance and property testing. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1598–1611. Full version at arXiv:1607.03236

  27. Anshu A, Jain R and Warsi N 2019 On the near-optimality of one-shot classical communication over quantum channels. Journal of Mathematical Physics 60: 012204:1–012205

    MathSciNet  MATH  Google Scholar 

  28. Anshu A, Jain R and Warsi N 2018 A generalized quantum Slepian–Wolf. IEEE Transactions on Information Theory 64: 1436–1453

    Article  MathSciNet  Google Scholar 

  29. Anshu A, Jain R and Warsi N 2019 Building blocks for communication over noisy quantum networks. IEEE Transactions on Information Theory 65: 1287–1306

    Article  MathSciNet  Google Scholar 

  30. Hsieh M H, Devetak I and Winter A 2008 Entanglement-assisted capacity of quantum multiple-access channels. IEEE Transactions on Information Theory 54: 3078–3090

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I profusely thank Mark Wilde for pointing out the need for a simultaneous decoder for the quantum MAC many years back while I was visiting McGill, and underscoring its importance for quantum network information theory. He also provided pointers to several important references. Patrick Hayden, David Ding and Hrant Gharibyan took great pains in reading a preliminary draft of this paper and provided useful feedback. I thank Rahul Jain for encouraging me to write up this result in the face of a long delay. I thank an anonymous referee for suggesting to give a full self contained solution for the pathological example of failure of ‘union by span’ in the introduction, and more detailed intuition behind smoothing and augmentation. I am grateful to three anonymous referees for suggesting giving a self-contained proof of the ‘baby case’ of ‘intersection’ of two-projector/two- sender cq-MAC. I thank Naqueeb Warsi for pointing me to his paper on the entanglement-assisted compound quantum channel and suggesting a possible application of tilted span of projectors to that problem. Finally, I thank an anonymous referee who pointed out a possible application of our tilted span to the ‘quantum OR bound’ of Harrow, Lin and Montanaro and asked whether our notion of intersection of projectors can lead to the proof of a chain rule for one-shot mutual information quantities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Sen.

Appendices

Appendix I. Proof of Proposition 4

We prove Proposition 4 in this section. We first show how to construct the objects whose existence is promised by the proposition. We then proceed to prove its claims. All the while, we use the notation of the proposition: \({\mathbf{x}} \), \({\mathbf{l}} \) will denote, respectively, computational basis vectors of \({\mathcal {X}}^{\otimes [c]}\), , \(0 \le \delta \le 1\), and \(0 \le \epsilon _{{\mathbf{x}} , (S_1, \ldots , S_l)} \le 1\).

In Appendix I.1, we show how to construct the perturbed state \((\rho ')_{{\mathbf{x}} ,{\mathbf{l}} ,\delta }^{A''_{[k]}}\) by tilting the original state \(\rho _{\mathbf{x} }^{A_{[k]}}\) appropriately. In Appendix I.2, we construct the ‘intersection’ projector \((\Pi ')_{{\mathbf{x}} ,{\mathbf{l}} ,\delta }^{A''_{[k]}}\) using the technique of matrix-tilted span. In Appendix I.3 we define two complex numbers and a tilting map, and in Appendix I.4 we define two operators required for the statement of Proposition 4 using the combinatorial and algebraic framework of matrix tilting. In Appendix I.5, we prove Claim 1 of Proposition 4 using simple operator inequalities. In Appendix I.6, we prove Claim 2 using the geometry behind the smoothing and augmentation technique described earlier. In Appendix I.7 we prove Claim 3, and in Appendix I.8 we prove Claim 4 using combinatorial properties of the tilting operator. In Appendix I.9, we observe that Claim 5 has already been proven in Appendix I.4 earlier. In Appendix I.10, we prove Claim 6 by invoking the results of Appendix I.2 regarding the geometry of the ‘intersection’ projector.

1.1 Appendix I.1 Constructing \((\rho ')_{{\mathbf{x}} ,{\mathbf{l}} ,\delta }^{A''_{[k]}}\)

Let , \(S \cap [k] \ne \{\}\). Define . Let \({\mathbf{l}} _S\) be a computational basis vector of \({\mathcal {L}}^{\otimes S}\). We define an isometric embedding \({\mathcal {T}}_{S, {\mathbf{l}} _S}\) of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\) into \( (({\mathcal {H}}\otimes {\mathbb {C}}^2) \otimes {\mathcal {L}}^{\otimes |S|})^{\otimes (S \cap [k])} \) as follows:

$$\begin{aligned} ({\mathcal {T}}_{S, {\mathbf{l}} _S}({\mathbf{h}} _{S \cap [k]}))_s := ({\mathbf{h}} _s, {\mathbf{l}} _S) \end{aligned}$$

where \(s \in S \cap [k]\), \({\mathbf{h}} _{S \cap [k]}\) is a computational basis vector of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\), and \({\mathbf{h}} _s\), \(({\mathcal {T}}_{S, {\mathbf{l}} _S}({\mathbf{h}} _{S \cap [k]}))_s\) are the entries in the sth coordinate of \({\mathbf{h}} _{S \cap [k]}\), \({\mathcal {T}}_{S, {\mathbf{l}} _S}({\mathbf{h}} _{S \cap [k]})\). Observe that \({\mathcal {T}}_{S, {\mathbf{l}} _S}\) maps computational basis vectors of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\) to computational basis vectors of \( (({\mathcal {H}}\otimes {\mathbb {C}}^2) \otimes {\mathcal {L}}^{\otimes |S|})^{\otimes (S \cap [k])}. \) Thus \({\mathcal {T}}_{S, {\mathbf{l}} _S}\) is an isometric embedding of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\) into \( (({\mathcal {H}}\otimes {\mathbb {C}}^2) \otimes {\mathcal {L}}^{\otimes |S|})^{\otimes (S \cap [k])} \), which further embeds into \(A''_{S \cap [k]}\) in the natural fashion. Let \({\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}}\) denote the identity embedding of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\) into \(A''_{(S \cap [k])}\). Observe that the range spaces of \( {\mathcal {T}}_{S, {\mathbf{l}} _S} \otimes {\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{ \otimes (\bar{S} \cap [k]) }}, \) as S ranges over subsets of intersecting [k] non-trivially, embed orthogonally into \(A''_{[k]}\) under the natural embedding. Also, for a fixed , \(S \cap [k] \ne \{\}\) the range spaces of \({\mathcal {T}}_{S, {\mathbf{l}} _S}\), as \({\mathbf{l}} _S\) ranges over computational basis vectors of \({\mathcal {L}}^{\otimes S}\), embed orthogonally into \(A''_{S \cap [k]}\) under the natural embedding.

We now define an isometric embedding \({\mathcal {T}}_{S, {\mathbf{l}} _S, \delta }\) of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\) into \(A''_{S \cap [k]}\) as follows:

$$\begin{aligned}&{\mathcal {T}}_{S, {\mathbf{l}} _S, \delta } \nonumber \\&\quad := \frac{1}{\sqrt{N(S, \delta )}} \left( {\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}}\right. \nonumber \\&\qquad +\sum _{(S_1, \ldots , S_l) \vdash \vdash S, l > 0} \delta ^{l} \, {\mathcal {T}}_{S_1, {\mathbf{l}} _{S_1}} \otimes \cdots \otimes {\mathcal {T}}_{S_l, {\mathbf{l}} _{S_l}} \nonumber \\&\qquad \left. \otimes {\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes ((S \cap [k]) {\setminus } (S_1 \cup \cdots \cup S_l))}}\right) , \end{aligned}$$
(A1)

where the normalisation factor \(N(S, \delta )\) is put in to make the embedding preserve length of vectors. Observe that \(N(S, \delta )\) is independent of the vector in \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\) on which \({\mathcal {T}}_{S, {\mathbf{l}} _S, \delta }\) acts since the terms in this summation have orthogonal range spaces. It can be estimated as follows:

$$\begin{aligned} N(S, \delta )&:=\displaystyle 1 + \sum _{(S_1, \ldots , S_l) \vdash \vdash S, l > 0} \delta ^{2l} \nonumber \\&\le \displaystyle 1 + \sum _{l=1}^{|S \cap [k]|} \delta ^{2l} \frac{2^{l|S \cap [c]|} (l+1)^{|S \cap [k]|}}{l!} \nonumber \\&\le \displaystyle 1 + \sum _{l=1}^{|S \cap [k]|} \frac{\delta ^{2l} 2^{l|S|}}{l!} < e^{\delta ^2 2^{|S|}}. \end{aligned}$$
(A2)

It is clear that \(N(S,\delta ) \ge 1\) and \(N(T_1, \delta ) \cdots N(T_m, \delta ) \le N(S, \delta )\) if \((T_1, \ldots , T_m) \vdash \vdash S\).

The map \({\mathcal {T}}_{S, {\mathbf{l}} _S, \delta }\) extends to subspaces and density matrices in \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\) in the natural way. We now define the quantum state

(A3)

in \(A''_1 \cdots A''_k\), where \(\rho _{\mathbf{x}} ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}\) can be thought of as a density matrix in \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}\) in the natural fashion.

1.2 Appendix I.2 Constructing \((\Pi ')_{{\mathbf{x}} ,{\mathbf{l}} ,\delta }^{A''_{[k]}}\)

For each \({\mathbf{x}} \), , \(l > 0\), let \(\Pi ''_{{\mathbf{x}} , (S_1, \ldots , S_l)}\) be the POVM element in \(A_1 \cdots A_k\) with the property that

$$\begin{aligned} {\mathrm{Tr}}\,[(\Pi '')_{{\mathbf{x}} , (S_1, \ldots , S_l)}^{A_{[k]}} \rho _{\mathbf{x}} ^{A_{[k]}}]\ge & {} 1 - \epsilon _{{\mathbf{x}} , (S_1, \ldots , S_l)}, \\ {\mathrm{Tr}}\,[(\Pi '')_{{\mathbf{x}} , (S_1, \ldots , S_l)}^{A_{[k]}} \rho _{{\mathbf{x}} , (S_1, \ldots , S_l)}^{A_{[k]}}]\le & {} 2^{-D_H^{\epsilon _{{\mathbf{x}} , (S_1, \ldots , S_l)}} (\rho _{{\mathbf{x}}} ^{A_{[k]}} \Vert \rho _{{\mathbf{x}} , (S_1, \ldots , S_l)}^{A_{[k]}})}. \end{aligned}$$

By Fact 2, there exists an orthogonal projection \(\Pi _{{\mathbf{x}} , (S_1, \ldots , S_l)}\) in \( (A_1 \cdots A_k) \otimes ({\mathbb {C}}^2)^{\otimes k} \cong ({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]} \) such that

$$\begin{aligned}&{\mathrm{Tr}}\,[\Pi ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}}_{{\mathbf{x}} , (S_1,\ldots , S_l)} (\rho _{\mathbf{x}} ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k})] \nonumber \\&\quad \ge 1 - \epsilon _{{\mathbf{x}} , (S_1, \ldots , S_l)}, \nonumber \\&{\mathrm{Tr}}\,[\Pi ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}}_{{\mathbf{x}} , (S_1,\ldots , S_l)} (\rho _{{\mathbf{x}} , (S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k})] \nonumber \\&\quad \le 2^{-D_H^{\epsilon _{{\mathbf{x}} , (S_1, \ldots , S_l)}} (\rho _{\mathbf{x}} ^{A_{[k]}} \Vert \rho _{{\mathbf{x}} , (S_1, \ldots , S_l)}^{A_{[k]}})}. \end{aligned}$$
(A4)

Let \(Y_{{\mathbf{x}} , (S_1, \ldots , S_l)}\) denote the orthogonal complement of the support of \(\Pi _{{\mathbf{x}} , (S_1, \ldots , S_l)}\) in \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}\). Identify \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}\) with the Hilbert space \({\mathcal {H}}\) of Proposition 3. Arrange all the non-empty pseudosubpartitions , \(m > 0\) into a linear order extending the refinement partial order \(\preceq \). Define the tilting matrix A, whose rows and columns are indexed by non-empty pseudosubpartitions of that intersect [k] non-trivially, as follows:

$$\begin{aligned}&A_{(S_1, \ldots , S_l), (T_1, \ldots , T_m)}\nonumber \\&\quad := \begin{array}{ll} \frac{\delta ^{2l}}{N(T_1, \delta ) \cdots N(T_m, \delta )} &{} \quad \text{ if }\ (S_1, \ldots , S_l) \preceq (T_1, \ldots , T_m), \\ 0 &{} \quad \text{ otherwise }. \end{array} \end{aligned}$$
(A5)

Observe that A is upper triangular, diagonal dominated, and substochastic. The diagonal-dominated property of A follows from the fact that \( N(T_1, \delta ) \cdots N(T_m, \delta ) \le N(W_1, \delta ) \cdots N(W_n, \delta ) \) if \((T_1, \ldots , T_m) \preceq (W_1, \ldots , W_n)\). The reason A is substochastic in general, and not stochastic, is because the empty pseudosubpartition is not included amongst the rows and columns of A. More precisely

$$\begin{aligned} \sum _{(S_1, \ldots , S_l): (S_1, \ldots , S_l) \preceq (T_1, \ldots , T_m), l > 0} \delta ^{2l}=N(T_1, \delta ) \cdots N(T_m, \delta ) - 1. \end{aligned}$$

For , \(l > 0\) define an isometric embedding \({\mathcal {T}}_{(S_1, \ldots , S_l), {\mathbf{l}} , \delta }\) of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}\) into \(A''_{[k]}\) as follows:

$$\begin{aligned} {\mathcal {T}}_{(S_1, \ldots , S_l), {\mathbf{l}} , \delta } := {\mathcal {T}}_{S_1, {\mathbf{l}} _{S_1}, \delta } \otimes \cdots \otimes {\mathcal {T}}_{S_l, {\mathbf{l}} _{S_l}, \delta } \otimes {\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k] {\setminus } (S_1 \cup \cdots S_l)}}. \end{aligned}$$
(A6)

Observe that the A-tilt of \(Y_{{\mathbf{x}} , (S_1, \ldots , S_l)}\) along the \((S_1, \ldots , S_l)\)th direction is nothing but the action of the isometric embedding \({\mathcal {T}}_{(S_1, \ldots , S_l), {\mathbf{l}} , \delta }\):

$$\begin{aligned}&Y'_{{\mathbf{x}} , (S_1, \ldots , S_l), {\mathbf{l}} , \delta }\nonumber \\&\quad := ({\mathcal {T}}_{\mathbf{l}} )_{(S_1, \ldots , S_l), A}(Y_{{\mathbf{x}} , (S_1, \ldots , S_l)}) ={\mathcal {T}}_{(S_1, \ldots , S_l), {\mathbf{l}} , \delta }(Y_{{\mathbf{x}} , (S_1, \ldots , S_l)}). \end{aligned}$$
(A7)

Define the A-tilted span

(A8)

View \(Y'_{{\mathbf{x}} , {\mathbf{l}} , \delta }\) as a subspace of \(A''_1 \ldots A''_k\). Let \((\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} , {\mathbf{l}} , \delta }}\) denote the orthogonal projection in \(A''_1 \ldots A''_k\) onto \(Y'_{{\mathbf{x}} , {\mathbf{l}} , \delta }\).

Let \((\Pi ')^{A''_{[k]}}_{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}}\) denote the orthogonal projection in \(A''_1 \ldots A''_k\) onto \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}\). We finally define the POVM element \((\Pi ')^{A''_{[k]}}_{{\mathbf{x}} ,{\mathbf{l}} ,\delta }\) in \(A''_1 \ldots A''_k\) to be

$$\begin{aligned} (\Pi ')^{A''_{[k]}}_{{\mathbf{x}} ,{\mathbf{l}} ,\delta } :=({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} , {\mathbf{l}} , \delta }}) ((\Pi ')^{A''_{[k]}}_{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}}) ({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} , {\mathbf{l}} , \delta }}). \end{aligned}$$
(A9)

1.3 Appendix I.3 Defining \(\alpha _{(S_1, \ldots , S_l), \delta }\), \(\beta _{(S_1, \ldots , S_l), \delta }\), \({\mathcal {T}}_{(S_1, \ldots , S_l), {\mathbf{l}} , \delta }\)

Recall that the isometric embedding \({\mathcal {T}}_{(S_1, \ldots , S_l), {\mathbf{l}} , \delta }\) of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}\) into \(A''_{[k]}\) has already been defined in Equation (A6). Also define

Since

for any , \(\{\} \ne S \cap [k] \subset [k]\),

It follows that \(0 \le \alpha _{(S_1, \ldots , S_l), \delta }, \beta _{(S_1, \ldots , S_l), \delta } \le 1\).

1.4 Appendix I.4 Constructing \(M_{(S_1, \ldots , S_l), {\mathbf{l}} , \delta }^{A''_{[k]}}\), \(N_{(S_1, \ldots , S_l), {\mathbf{l}} , \delta }^{A''_{[k]}}\)

Let , \(\{\} \ne S \cap [k] \subset [k]\). Define . For a subset , \(T \cap [k] \ne \{\}\) we say that T crosses S if \(T \cap S \cap [k] \ne \{\}\) and \(T \cap \bar{S} \cap [k] \ne \{\}\). We define a pseudosubpartition to cross S if there exists an \(i \in [l]\) such that \(T_i\) crosses S. We use the notation \((T_1, \ldots , T_l) \models _{\times } S\) to denote that pseudosubpartition \((T_1, \ldots , T_l)\) crosses S. We define the S-signature of a pseudosubpartition \((T_1, \ldots , T_l)\) to be the pseudosubpartition \((T_1, \ldots , T_{l'})\) where \(l' \le l\) and \(T_1, \ldots , T_{l'}\) are the subsets that actually cross S. We shall denote pseudosubpartitions , where for all \(i \in [l]\ T_i\) crosses S, by the notation \((T_1, \ldots , T_{l}) \models _{\times \times } S\). If pseudosubpartition \((T_1, \ldots , T_l)\) has S-signature \((T_1, \ldots , T_{l'})\), we shall denote it by \((T_1, \ldots , T_l) \rightthreetimes _S (T_1, \ldots , T_{l'})\). Observe that \((T_1, \ldots , T_{l'}) \models _{\times \times } S\).

From Equation (A1), we observe that

(A10)

We will denote the second term of the summation here by \({\mathcal {T}}_{\models _{\times } S, {\mathbf{l}} , \delta }\). Observe that \({\mathcal {T}}_{\models _{\times } S, {\mathbf{l}} , \delta }\) is a scaled isometric embedding of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}\) into \(A''_{[k]}\).

Let \(|{h}\rangle \) be a unit length vector in \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}\). Let the Schmidt decomposition of \(|{h}\rangle \) with respect to \((S \cap [k], \bar{S} \cap [k])\) be

$$\begin{aligned} |{h}\rangle ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}} = \sum _i \sqrt{p_i} |{\alpha _i}\rangle ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}} \otimes |{\beta _i}\rangle ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (\bar{S} \cap [k])}}, \end{aligned}$$

where \(\sum _i p_i = 1\). Let the Schmidt decomposition of \({\mathcal {T}}_{\models _{\times } S, {\mathbf{l}} , \delta }(|{h}\rangle )\) with respect to \((S \cap [k], \bar{S} \cap [k])\) be

$$\begin{aligned}&({\mathcal {T}}_{\models _{\times } S, {\mathbf{l}} , \delta }(|{h}\rangle ))^{A''_{[k]}}\nonumber \\&\quad = \sum _{(T_1, \ldots , T_{l'}) \models _{\times \times } S} \sum _{j_{(T_1, \ldots , T_{l'})}} \sqrt{q_{j_{(T_1, \ldots , T_{l'})}}} \nonumber \\&\qquad |{\gamma _{j_{(T_1, \ldots , T_{l'})}}}\rangle ^{A''_{S \cap [k]}} \otimes |{\delta _{j_{(T_1, \ldots , T_{l'})}}}\rangle ^{A''_{\bar{S} \cap [k]}}, \end{aligned}$$
(A11)

where \( \sum _{ (T_1, \ldots , T_{l'}) \models _{\times \times } S } \sum _{j_{(T_1, \ldots , T_{l'})}} q_{j_{(T_1, \ldots , T_{l'})}} \) may be less than 1, reflecting the fact that the length of \({\mathcal {T}}_{\models _{\times } S, {\mathbf{l}} , \delta }(|{h}\rangle )\) may be less than 1. For a pseudosubpartition \((T_1, \ldots , T_{l'}) \models _{\times \times } S\), the expression \( \sum _{j_{(T_1, \ldots , T_{l'})}} \sqrt{q_{j_{(T_1, \ldots , T_{l'})}}} |{\gamma _{j_{(T_1, \ldots , T_{l'})}}}\rangle ^{A''_{S \cap [k]}} \otimes |{\delta _{j_{(T_1, \ldots , T_{l'})}}}\rangle ^{A''_{\bar{S} \cap [k]}} \) is the Schmidt decomposition of

with respect to \((S \cap [k], \bar{S} \cap [k])\). We observe that the span of the vectors \( \{|{\gamma _{j_{(T_1, \ldots , T_{l'})}}}\rangle ^{A''_{S \cap [k]}}\}_{ j_{(T_1, \ldots , T_{l'})} } \) is orthogonal to the span of the vectors \( \{|{\gamma _{j_{(S_1, \ldots , S_{m'})}}}\rangle ^{A''_{S \cap [k]}}\}_{ j_{(S_1, \ldots , S_{m'})} } \) for different pseudosubpartitions \( (T_1, \ldots , T_{l'}), (S_1, \ldots , S_{m'}) \models _{\times \times } S. \) Similarly, the span of \( \{|{\delta _{j_{(T_1, \ldots , T_{l'})}}}\rangle ^{A''_{\bar{S} \cap [k]}}\}_{ j_{(T_1, \ldots , T_{l'})} } \) is orthogonal to the span of \( \{|{\delta _{j_{(S_1, \ldots , S_{m'})}}}\rangle ^{A''_{\bar{S} \cap [k]}}\}_{ j_{(S_1, \ldots , S_{m'})} }. \) Thus, Equation (A11) is indeed a valid Schmidt decomposition for \({\mathcal {T}}_{\models _{\times } S, {\mathbf{l}} , \delta }(|{h}\rangle )\).

Now

Observe that this is a Schmidt decomposition of , that is, for all i, \((T_1, \ldots , T_{l'}) \models _{\times \times } S\), \(j_{(T_1, \ldots , T_{l'})}\)

$$\begin{aligned} {\mathcal {T}}_{S \cup [c], {\mathbf{l}} _{S \cup [c]}, \delta }(|{\alpha _i}\rangle ) \perp |{\gamma _{j_{(T_1, \ldots , T_{l'})}}}\rangle \end{aligned}$$

and \( {\mathcal {T}}_{\bar{S} \cup [c], {\mathbf{l}} _{\bar{S} \cup [c]}, \delta }(|{\beta _i}\rangle ) \perp |{\delta _{j_{(T_1, \ldots , T_{l'})}}}\rangle \).

Thus

Express \(\rho _{\mathbf{x}} ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}\) in terms of its eigenbasis

$$\begin{aligned} \rho _{\mathbf{x}} ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k} =\sum _i s_i |{(h(i))}\rangle \langle {(h(i))}|^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}}, \end{aligned}$$
(A12)

where \(\sum _i s_i = 1\). Let \(|{\gamma _{j_{(T_1, \ldots , T_{l'})}}(i)}\rangle \), \(q_{j_{(T_1, \ldots , T_{l'})}}(i)\) be the appropriate vectors and coefficients for \(|{(h(i))}\rangle \) as defined in Equation (A11). Then, using Equation (A3), we get

where \((M'')_{S, {\mathbf{x}} , {\mathbf{l}} , \delta }^{A''_{S \cap [k]}}\) is defined to be the second term in the summation in the first equality here. Note that \((M'')_{S, {\mathbf{x}} , {\mathbf{l}} , \delta }^{A''_{S \cap [k]}}\) is a positive semidefinite matrix with support orthogonal to the support of the first matrix in the summation here.

We say that a pseudosubpartition \((T_1, \ldots , T_l) \vdash \vdash S \cup [c]\) leaks out of S if there exists an \(i \in [l]\) such that \(T_i \cap \bar{S} \cap [c] \ne \{\}\). We use the notation \((T_1, \ldots , T_l) \models _{\rightsquigarrow } S\) to denote that pseudosubpartition \((T_1, \ldots , T_l)\) leaks out of S. Observe that

$$\begin{aligned}&{\mathcal {T}}_{S \cup [c], {\mathbf{l}} _{S \cup [c]}, \delta } \\&\quad = \sqrt{\frac{N(S, \delta )}{N(S \cup [c], \delta )}} {\mathcal {T}}_{S, {\mathbf{l}} _S, \delta } \\&\qquad \displaystyle + \frac{1}{\sqrt{N(S \cup [c], \delta )}} \sum _{(T_1, \ldots , T_l) \vdash \vdash S \cup [c], (T_1, \ldots , T_l) \models _{\rightsquigarrow } S} \\&\qquad \delta ^l \,({\mathcal {T}}_{T_1, {\mathbf{l}} _{T_1}} \otimes \cdots \otimes {\mathcal {T}}_{T_l, {\mathbf{l}} _{T_l}} \otimes {\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes ((S \cap [k]) {\setminus } (T_1 \cup \cdots \cup T_l))}}). \end{aligned}$$

We use \({\mathcal {T}}_{\models _{\rightsquigarrow } S, {\mathbf{l}} _{S \cup [c]}, \delta }\) to denote the second term in the sum here. The map \({\mathcal {T}}_{\models _{\rightsquigarrow } S, {\mathbf{l}} _{S \cup [c]}, \delta }\) is a scaled isometric embedding of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\) into \(A''_{S \cap [k]}\). Let \(|{h}\rangle \in ({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\) be a unit length vector. Define the Hermitian matrix

$$\begin{aligned}&(N''_{{\mathbf{l}} _{S \cup [c]}, \delta }(|{h}\rangle \langle {h}|))^{A''_{S \cap [k]}} \\&\quad := ({\mathcal {T}}_{S \cup [c], {\mathbf{l}} _{S \cup [c]}, \delta } (|{h}\rangle \langle {h}|))^{A''_{S \cap [k]}} \\&\quad -\frac{N(S, \delta )}{N(S \cup [c], \delta )} ({\mathcal {T}}_{S, {\mathbf{l}} _S, \delta }(|{h}\rangle \langle {h}|))^{A''_{S \cap [k]}}. \end{aligned}$$

Then

$$\begin{aligned}&(N''_{{\mathbf{l}} _{S \cup [c]}, \delta }(|{h}\rangle \langle {h}|))^{A''_{S \cap [k]}}\nonumber \\&\quad = \displaystyle \sqrt{\frac{N(S, \delta )}{N(S \cup [c], \delta )}} (({\mathcal {T}}_{S, {\mathbf{l}} _S, \delta }(|{h}\rangle ){\mathcal {T}}_{\models _{\rightsquigarrow } S, {\mathbf{l}} _{S \cup [c]}, \delta }(\langle {h}|) )^{A''_{S \cap [k]}} \nonumber \\&\qquad +({\mathcal {T}}_{\models _{\rightsquigarrow } S, {\mathbf{l}} _{S \cup [c]}, \delta }(|{h}\rangle ) {\mathcal {T}}_{S, {\mathbf{l}} _S, \delta }(\langle {h}|))^{A''_{S \cap [k]}}) \nonumber \\&\qquad +({\mathcal {T}}_{\models _{\rightsquigarrow } S, {\mathbf{l}} _{S \cup [c]}, \delta } (|{h}\rangle \langle {h}|) )^{A''_{S \cap [k]}}. \end{aligned}$$
(A13)

Looking at Equation (A12), we define the Hermitian matrix

$$\begin{aligned} (N''_{S, {\mathbf{x}} , {\mathbf{l}} , \delta })^{A''_{S \cap [k]}} := \sum _i s_i (N''_{{\mathbf{l}} _{S \cup [c]}, \delta } (|{h(i)}\rangle \langle {h(i)}|))^{A''_{S \cap [k]}}. \end{aligned}$$
(A14)

Note that \((N''_{S, {\mathbf{x}} , {\mathbf{l}} , \delta })^{A''_{S \cap [k]}} = 0\) if \(c = 0\). Thus

$$\begin{aligned}&\left( {\mathcal {T}}_{S \cup [c], {\mathbf{l}} _{S \cup [c]}, \delta } \left( \rho _{\mathbf{x}} ^{A_{S \cap [k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes |S \cap [k]|} \right) \right) ^{A''_{S \cap [k]}} \\&\quad = \frac{N(S, \delta )}{N(S \cup [c], \delta )} \left( {\mathcal {T}}_{S, {\mathbf{l}} _S, \delta }\left( \rho _{\mathbf{x}} ^{A_{S \cap [k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes |S \cap [k]|}\right) \right) ^{A''_{S \cap [k]}} \\&\qquad +(N''_{S, {\mathbf{x}} , {\mathbf{l}} , \delta })^{A''_{S \cap [k]}}, \end{aligned}$$

and

Observe that \((M''_{S, {\mathbf{x}} , {\mathbf{l}} , \delta })^{A''_{S \cap [k]}}\) has support orthogonal to the sum of the first two terms in this equation and

Also note that the sum of the first two terms is a positive semidefinite matrix.

Now define

(A15)

Obviously, \((M')_{S, {\mathbf{x}} _{S \cap [c]}, {\mathbf{l}} _S, \delta }^{A''_{S \cap [k]}}\) is a positive semidefinite matrix and \((N')_{S, {\mathbf{x}} _{S \cap [c]}, {\mathbf{l}} _S, \delta }^{A''_{S \cap [k]}}\) is a Hermitian matrix. Moreover, \((N')_{S, {\mathbf{x}} _{S \cap [c]}, {\mathbf{l}} _S, \delta }^{A''_{S \cap [k]}} = 0\) if \(c = 0\). Recalling the definition of \((\rho ')_{{\mathbf{x}} _{S \cap [c]}, {\mathbf{l}} _{S}, \delta }^{A''_{S \cap [k]}}\) in Claim 5 of Proposition 4, we see that

Observe that \((M')_{S, {\mathbf{x}} _{S \cap [c]}, {\mathbf{l}} _S, \delta }^{A''_{S \cap [k]}}\) has support orthogonal to that of the sum of the first two terms in this equation and . Also note that the sum of the first two terms is a positive semidefinite matrix.

Now recalling the definition of \((\rho ')_{{\mathbf{x}} , {\mathbf{l}} ,(S_1, \ldots , S_l),\delta }^{A''_{S \cap [k]}}\) from Claim 5 of Proposition 4, we see that

(A16)

Here, the notation “Other Terms II” denotes a \((2^l - 1)\)-fold sum of tensor products of \((l+1)\) matrices where one multiplicand is \(\sigma _{\mathbf{x}} ^{A_{[k] {\setminus } (S_1 \cup \cdots \cup S_l)}} \otimes (|{0}\rangle \langle {0}|)^{({\mathbb {C}}^2)^{\otimes |[k] {\setminus } (S_1 \cup \cdots \cup S_l)|}}, \) at least one multiplicand is of the form \( (M')^{A''_{S_i \cap [k]}}_{ S_i, {\mathbf{x}} _{S_i \cap [c]}, {\mathbf{l}} _{S_i}, \delta }, \) and the remaining multiplicands are of the form

having \(\ell _1\)-norm at most 1. We use \((M')^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta }\) to denote the “Other Terms II”. It is clear that \( (M')^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta } \) is a positive semidefinite matrix with trace \( 1 - \alpha _{(S_1, \ldots , S_l), \delta } - \beta _{(S_1, \ldots , S_l), \delta }. \) Define

$$\begin{aligned} M^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta } :=\frac{(M')^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta }}{1- \alpha _{(S_1, \ldots , S_l), \delta } - \beta _{(S_1, \ldots , S_l), \delta }}. \end{aligned}$$
(A17)

It is now clear that \(M^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta }\) is a positive semidefinite matrix with unit trace with support orthogonal to that of the sum of the first two terms in Equation (A16). The notation “Other Terms I” denotes a \((2^l - 1)\)-fold sum of tensor products of \((l+1)\) matrices where one multiplicand is \(\sigma _{\mathbf{x}} ^{A_{[k] {\setminus } (S_1 \cup \cdots \cup S_l)}} \otimes (|{0}\rangle \langle {0}|)^{({\mathbb {C}}^2)^{\otimes |[k] {\setminus } (S_1 \cup \cdots \cup S_l)|}},\) at least one multiplicand is of the form \((N')^{A''_{S_i \cap [k]}}_{ S_i, {\mathbf{x}} _{S_i \cap [c]}, {\mathbf{l}} _{S_i}, \delta },\) and the remaining multiplicands are of the form

with \(\ell _1\)-norm at most one. We use \((N')^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta }\) to denote the “Other Terms I”. It is clear that \( (N')^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta } \) is a Hermitian matrix with trace \(\beta _{(S_1, \ldots , S_l), \delta }. \) Define

$$\begin{aligned} N^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta } :=\begin{array}{ll} \frac{(N')^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta }}{\beta _{(S_1, \ldots , S_l), \delta }} &{} \quad \text{ if }\ \beta _{(S_1, \ldots , S_l), \delta } = 0, \\ \frac{{\mathbb {1}}^{A''_{[k]}}}{|A''_{[k]}|} &{}\quad \text{ otherwise }. \end{array} \end{aligned}$$
(A18)

It is now clear that \(N^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta }\) is a Hermitian matrix with unit trace. Also, \(\beta _{(S_1, \ldots , S_l), \delta } = 0\) if \(c = 0\).

Thus

$$\begin{aligned}&(\rho ')_{{\mathbf{x}} ,{\mathbf{l}} ,(S_1, \ldots , S_l),\delta }^{A''_{[k]}} \\&\quad = \alpha _{(S_1, \ldots , S_l), \delta } ({\mathcal {T}}_{(S_1, \ldots , S_l), {\mathbf{l}} , \delta } (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}))^{A''_{[k]}} \\&\qquad + \beta _{(S_1, \ldots , S_l), \delta } N^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta } \\&\qquad +(1- \alpha _{(S_1, \ldots , S_l), \delta } - \beta _{(S_1, \ldots , S_l), \delta }) M^{A''_{[k]}}_{(S_1, \ldots , S_l),{\mathbf{x}} ,{\mathbf{l}} ,\delta }. \end{aligned}$$

1.5 Appendix I.5 Proving Claim 1

Using Equation (A9), we have

$$\begin{aligned}&\left\| {(\Pi ')_{{\mathbf{x}} ,{\mathbf{l}} ,\delta }^{A''_{[k]}}}\right\| _1 \\&\quad \le \left\| {({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }})}\right\| _\infty \left\| {((\Pi ')^{A''_{[k]}}_{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}})}\right\| _1 \\&\qquad \left\| {({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }})}\right\| _\infty \\&\quad \le \left\| {(\Pi ')_{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}}^{A''_{[k]}}}\right\| _1 = |({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}| \\&\quad = (2 |{\mathcal {H}}|)^k, \end{aligned}$$

where we use the fact that \( \left\| { ( {\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }} ) }\right\| _\infty \le 1 \) as \(({\mathbb {1}}^{A''_{[k]}} - (\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }})\) is the orthogonal projection onto the complement of the subspace \(Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }\).

1.6 Appendix I.6 Proving Claim 2

Let , \(\{\} \ne S \cap [k] \ne [k]\). Let \(|{h_{\mathbf{x}} (i)}\rangle \in ({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}\) be the ith eigenvector of \(\rho _{\mathbf{x}} ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}\). Fix a subpartition \((T_1, \ldots , T_{l'}) \models _{\times \times } S\) and an index \(j_{(T_1, \ldots , T_{l'})}\) in the Schmidt decomposition of \({\mathcal {T}}_{\models _\times S, {\mathbf{l}} , \delta }(|{h_{\mathbf{x}} (i)}\rangle )\) with respect to \((S \cap [k], \bar{S} \cap [k])\) given in Equation (A11). Define

$$\begin{aligned}&(M')^{A''_{S \cap [k]}}_{ S,{\mathbf{x}} , {\mathbf{l}} _S,\delta , (T_1,\ldots ,T_{l'}),j_{(T_1, \ldots , T_{l'})} }(i) \\&\quad := |{\mathcal {L}}|^{-|\bar{S}|} \sum _{{\mathbf{l}} '_{\bar{S}}} |{\gamma _{j_{(T_1, \ldots , T_{l'})}, {\mathbf{x}} , {\mathbf{l}} _S {\mathbf{l}} '_{\bar{S}}}(i)}\rangle \langle {\gamma _{j_{(T_1, \ldots , T_{l'})}, {\mathbf{x}} , {\mathbf{l}} _S {\mathbf{l}} '_{\bar{S}}}(i)}|^{A''_{S \cap [k]}}, \end{aligned}$$

where we write \(|{\gamma _{j_{(T_1, \ldots , T_{l'})}, {\mathbf{x}} ,{\mathbf{l}} _S {\mathbf{l}} '_{\bar{S}}}(i)}\rangle \) in order to emphasise the dependence on \({\mathbf{x}} \) and \({\mathbf{l}} := {\mathbf{l}} _S {\mathbf{l}} '_{\bar{S}}\).

From the definition of \((M')_{S, {\mathbf{x}} _{S \cap [c]}, {\mathbf{l}} _S, \delta }^{A''_{S \cap [k]}}\) in Equation (A15), it is easy to see that proving

$$\begin{aligned} \left\| {(M')^{A''_{S \cap [k]}}_{S,{\mathbf{x}} , {\mathbf{l}} _S,\delta , (T_1,\ldots ,T_{l'}),j_{(T_1, \ldots , T_{l'})}}(i)}\right\| _\infty \le \frac{1}{|{\mathcal {L}}|} \end{aligned}$$

for all subpartitions \((T_1,\ldots ,T_{l'}) \vdash _{\times \times } S\), indices \(j_{(T_1, \ldots , T_{l'})}\), and i suffices to show that

$$\begin{aligned} \left\| { (M')_{S, {\mathbf{x}} _{S \cap [c]}, {\mathbf{l}} _S, \delta }^{A''_{S \cap [k]}}}\right\| _\infty \le \frac{1}{|{\mathcal {L}}|} {\mathrm{Tr}}\,[(M')_{S, {\mathbf{x}} _{S \cap [c]}, {\mathbf{l}} _S, \delta }^{A''_{S \cap [k]}}]. \end{aligned}$$

Now it is easy to see using Equations (A16), (A17) that this implies that

$$\begin{aligned} \left\| {(M')_{(S_1, \ldots , S_l), {\mathbf{x}} , {\mathbf{l}} , \delta }^{A''_{[k]}}}\right\| _\infty\le & {} \frac{1}{|{\mathcal {L}}|} {\mathrm{Tr}}\,[ (M')_{(S_1, \ldots , S_l), {\mathbf{x}} , {\mathbf{l}} , \delta }^{A''_{[k]}}] \\ \implies \left\| {M_{(S_1, \ldots , S_l), {\mathbf{x}} , {\mathbf{l}} , \delta }^{A''_{[k]}}}\right\| _\infty\le & {} \frac{1}{|{\mathcal {L}}|}. \end{aligned}$$

It only remains to show \(\left\| {(M')^{A''_{S \cap [k]}}_{S,{\mathbf{x}} , {\mathbf{l}} _S,\delta ,(T_1,\ldots ,T_{l'}),j_{(T_1, \ldots , T_{l'})} }(i) }\right\| _\infty \le \frac{1}{|{\mathcal {L}}|} \) for any subpartition \((T_1,\ldots ,T_{l'}) \vdash _{\times \times } S\), index \(j_{(T_1, \ldots , T_{l'})}\), and i. In fact, we will prove the stronger statement that

$$\begin{aligned} \left\| { (M')^{A''_{S \cap [k]}}_{S,{\mathbf{x}} , {\mathbf{l}} _S, \delta ,(T_1,\ldots ,T_{l'}),j_{(T_1, \ldots , T_{l'})}}(i)}\right\| _\infty \le \frac{1}{|{\mathcal {L}}|^{|(T_1 \cup \cdots \cup T_{l'}) \cap \bar{S}|}}. \end{aligned}$$

Since \((T_1 \cup \cdots \cup T_{l'}) \cap \bar{S} \ne \{\}\), this would complete the proof of the first part of Claim 2 of Proposition 4.

By triangle inequality, we have

$$\begin{aligned}&\left\| { (M')^{A''_{S \cap [k]}}_{ S,{\mathbf{x}} ,{\mathbf{l}} _S,\delta ,(T_1,\ldots ,T_{l'}),j_{(T_1, \ldots , T_{l'})}}(i)}\right\| _\infty \\&\quad \le |{\mathcal {L}}|^{-|\bar{S} \cap (T_1 \cup \cdots T_{l'})|} |{\mathcal {L}}|^{-|\bar{S} {\setminus } (T_1 \cup \cdots T_{l'})|} \sum _{{\mathbf{l}} '_{\bar{S} {\setminus } (T_1 \cup \cdots T_{l'})}} \\&\qquad \left\| \sum _{{\mathbf{l}} '_{\bar{S} \cap (T_1 \cup \cdots T_{l'})}} |{\gamma _{j_{T_1, \ldots , T_{l'})},{\mathbf{x}} ,{\mathbf{l}} _S {\mathbf{l}} '_{\bar{S} {\setminus } (T_1 \cup \cdots T_{l'})} {\mathbf{l}} '_{\bar{S} \cap (T_1 \cup \cdots T_{l'})}}(i)}\rangle \right. \\&\qquad \left. \langle {\gamma _{j_{T_1, \ldots , T_{l'})}, {\mathbf{x}} ,{\mathbf{l}} _S{\mathbf{l}} '_{\bar{S} {\setminus } (T_1 \cup \cdots T_{l'})} {\mathbf{l}} '_{\bar{S} \cap (T_1 \cup \cdots T_{l'})}}(i)}|^{A''_{S \cap [k]}} \right\| _\infty \\&\quad =|{\mathcal {L}}|^{-|\bar{S} \cap (T_1 \cup \cdots T_{l'})|} |{\mathcal {L}}|^{-|\bar{S} {\setminus } (T_1 \cup \cdots T_{l'})|} \sum _{{\mathbf{l}} '_{\bar{S} {\setminus } (T_1 \cup \cdots T_{l'})}} 1 \\&\quad =|{\mathcal {L}}|^{-|\bar{S} \cap (T_1 \cup \cdots T_{l'})|}, \end{aligned}$$

where we use the fact that

$$\begin{aligned}&|{\gamma _{j_{(T_1, \ldots , T_l)}, {\mathbf{x}} , {\mathbf{l}} _S {\mathbf{l}} '_{\bar{S} {\setminus } (S_1 \cup \cdots \cup S_{l'})} {\mathbf{l}} '_{\bar{S} \cap (T_1 \cup \cdots T_{l'})}}(i)}\rangle \\&\quad \perp |{\gamma _{j_{(T_1, \ldots , T_l)},{\mathbf{x}} , {\mathbf{l}} _S {\mathbf{l}} '_{\bar{S} {\setminus } (S_1 \cup \cdots \cup S_{l'})} {\mathbf{l}} ''_{\bar{S} \cap (T_1 \cup \cdots T_{l'})}}(i)}\rangle \end{aligned}$$

for \({\mathbf{l}} '_{\bar{S} \cap (T_1 \cup \cdots T_{l'})} \ne {\mathbf{l}} ''_{\bar{S} \cap (T_1 \cup \cdots T_{l'})}\) in this equality. This follows from the observation that for distinct computational basis vectors \({\mathbf{l}} '_{\bar{S} \cap (T_1 \cup \cdots T_{l'})},\) \({\mathbf{l}} ''_{\bar{S} \cap (T_1 \cup \cdots T_{l'})},\) there exists an \(i \in [l']\), a coordinate \(a \in \bar{S} \cap T_i\) such that \({\mathbf{l}} '_a \ne {\mathbf{l}} ''_a\), which implies that \( |{ \gamma _{ j_{(T_1, \ldots , T_l)}, {\mathbf{x}} , {\mathbf{l}} _S {\mathbf{l}} '_{\bar{S} {\setminus } (S_1 \cup \cdots \cup S_{l'})} {\mathbf{l}} '_{\bar{S} \cap (T_1 \cup \cdots T_{l'})} }(i)}\rangle \),

\(|{\gamma _{ j_{(T_1, \ldots , T_l)}, {\mathbf{x}} , {\mathbf{l}} _S {\mathbf{l}} '_{\bar{S} {\setminus } (S_1 \cup \cdots \cup S_{l'})} {\mathbf{l}} ''_{\bar{S} \cap (T_1 \cup \cdots T_{l'})} }(i) }\rangle \) lie in the orthogonal subspaces \( ( ({\mathcal {H}}\otimes {\mathbb {C}}^2) \otimes |{{\mathbf{l}} _{T_i \cap S} {\mathbf{l}} '_{T_i \cap \bar{S}}}\rangle )_b \otimes A''_{(S \cap [k]) {\setminus } \{b\}},\) \( ( ({\mathcal {H}}\otimes {\mathbb {C}}^2) \otimes |{{\mathbf{l}} _{T_i \cap S} {\mathbf{l}} ''_{T_i \cap \bar{S}}}\rangle )_b \otimes A''_{(S \cap [k]) {\setminus } \{b\}},\) \(b \in S \cap [k] \cap T_i,\) where the first multiplicands in the two tensor products are embedded into \(A''_b\).

This completes the proof of the first part of Claim 2 of Proposition 4.

Again, let , \(\{\} \ne S \cap [k] \ne [k]\). If \([c] \subset S\), then \( N''_{{\mathbf{l}} _{S \cup [c]}, \delta }(|{h}\rangle \langle {h}|) = 0. \) Suppose \(S \cap [c] \ne [c]\). Suppose one were to show that

$$\begin{aligned} \left\| {\sum _{{\mathbf{l}} '_{[c] {\setminus } S}} (N''_{{\mathbf{l}} _{S} {\mathbf{l}} '_{[c] {\setminus } S}, \delta }(|{h}\rangle \langle {h}|))^{A''_{S \cap [k]}}}\right\| _\infty \le 3 |{\mathcal {L}}|^{|[c] {\setminus } S| - 1/2} \end{aligned}$$

for all unit length vectors \(|{h}\rangle \in ({\mathcal {H}}\otimes {\mathbb {C}^2})^{\otimes (S \cap [k])}\). From Equations (A14), (A15) and the triangle inequality, in either case, it will follow that

Now it is easy to see using Equations (A16), (A18) that this implies that

$$\begin{aligned} \beta _{(S_1, \ldots , S_l), \delta } \left\| {(N')_{(S_1, \ldots , S_l), {\mathbf{x}} , {\mathbf{l}} , \delta }^{A''_{[k]}}}\right\| _\infty \le \frac{3}{\sqrt{|{\mathcal {L}}|}}. \end{aligned}$$

It only remains to show for \(S \cap [c] \ne [c]\) that

$$\begin{aligned} \left\| {\sum _{{\mathbf{l}} '_{[c] {\setminus } S}} (N''_{{\mathbf{l}} _{S} {\mathbf{l}} '_{[c] {\setminus } S}, \delta }(|{h}\rangle \langle {h}|))^{A''_{S \cap [k]}}}\right\| _\infty \le 3 |{\mathcal {L}}|^{|[c] {\setminus } S| - 1/2} \end{aligned}$$

for any unit length vector \(|{h}\rangle \in ({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes (S \cap [k])}\). By Equation (A13), it suffices to show that

$$\begin{aligned}&\left\| {\sum _{{\mathbf{l}} '_{[c] {\setminus } S}} {\mathcal {T}}_{\models _\rightsquigarrow S, {\mathbf{l}} _S {\mathbf{l}} '_{[c] {\setminus } S}, \delta } (|{h}\rangle )}\right\| _2 \le |{\mathcal {L}}|^{|[c] {\setminus } S| - 1/2},\\&\left\| {\sum _{{\mathbf{l}} '_{[c] {\setminus } S}} {\mathcal {T}}_{\models _\rightsquigarrow S, {\mathbf{l}} _S {\mathbf{l}} '_{[c] {\setminus } S}, \delta } (|{h}\rangle \langle {h}|)}\right\| _\infty \le |{\mathcal {L}}|^{|[c] {\setminus } S| - 1}. \end{aligned}$$

Since the range spaces of the summands in the definition of \({\mathcal {T}}_{\models _\rightsquigarrow S, {\mathbf{l}} _{S \cup [c]} , \delta }\) are orthogonal, it suffices to show, for any \((T_1, \ldots , T_l) \vdash \vdash S \cup [c]\), \((T_1, \ldots , T_l) \models _\rightsquigarrow S\), \({\mathbf{l}} _S\), \({\mathbf{l}} '_{[c] {\setminus } (S \cup T_1 \cup \cdots \cup T_l)}\) that

$$\begin{aligned}&\left\| \sum _{{\mathbf{l}} ''_{([c] {\setminus } S) \cap (T_1 \cup \cdots \cup T_l)}} ({\mathcal {T}}_{T_1, {\mathbf{l}} _{T_1}} \otimes \cdots \otimes {\mathcal {T}}_{T_l, {\mathbf{l}} _{T_l}}\right. \\&\qquad \left. \otimes {\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes ((S \cap [k]) {\setminus } (T_1 \cup \cdots \cup T_l))}})(|{h}\rangle )\right\| _2 \\&\quad = \sqrt{|{\mathcal {L}}|^{|([c] {\setminus } S) \cap (T_1 \cup \cdots \cup T_l)|}} \end{aligned}$$

and

$$\begin{aligned}&\left\| \sum _{{\mathbf{l}} ''_{([c] {\setminus } S) \cap (T_1 \cup \cdots \cup T_l)}} ({\mathcal {T}}_{T_1, {\mathbf{l}} _{T_1}} \otimes \cdots \otimes {\mathcal {T}}_{T_l, {\mathbf{l}} _{T_l}} \right. \\&\qquad \left. \otimes {\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes ((S \cap [k]) {\setminus } (T_1 \cup \cdots \cup T_l))}}) (|{h}\rangle \langle {h}|)\right\| _\infty \\&\quad = 1. \end{aligned}$$

The last two equalities arise from the fact that for any two distinct computational basis vectors

$$\begin{aligned} {\mathbf{l}} ''_{([c] {\setminus } S) \cap (T_1 \cup \cdots \cup T_l)} \ne {\mathbf{l}} '''_{([c] {\setminus } S) \cap (T_1 \cup \cdots \cup T_l)} \end{aligned}$$

the range spaces of

$$\begin{aligned} {\mathcal {T}}_{T_1, {\mathbf{l}} _{T_1}} \otimes \cdots \otimes {\mathcal {T}}_{T_l, {\mathbf{l}} _{T_l}} \otimes {\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes ((S \cap [k]) {\setminus } (T_1 \cup \cdots \cup T_l))}} \end{aligned}$$

are orthogonal. This follows from the observation that there exists an \(i \in [l]\), a coordinate \(a \in [c] \cap \bar{S} \cap T_i\) such that \({\mathbf{l}} ''_a \ne {\mathbf{l}} '''_a\), which implies that the two range spaces embed into the orthogonal spaces \( ( ({\mathcal {H}}\otimes {\mathbb {C}}^2) \otimes |{ {\mathbf{l}} _{T_i \cap S} {\mathbf{l}} ''_{T_i \cap \bar{S} \cap [c]}}\rangle )_b \otimes A''_{(S \cap [k]) {\setminus } \{b\}}\), \((({\mathcal {H}}\otimes {\mathbb {C}}^2) \otimes |{ {\mathbf{l}} _{T_i \cap S} {\mathbf{l}} '''_{T_i \cap \bar{S} \cap [c]} }\rangle )_b \otimes A''_{(S \cap [k]) {\setminus } \{b\}}\), \(b \in S \cap [k] \cap T_i\), where the first multiplicands in the two tensor products are embedded into \(A''_b\).

This completes the proof of the second part of Claim 2 of Proposition 4.

1.7 Appendix I.7 Proving Claim 3

Let \(|{h}\rangle \) be a unit length vector in \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}\). From Equation (A1) and Inequality (A2), we get

Thus

where we used the fact that \(e^{-x} \ge 1 - x\) in the last inequality. Recalling Equation (A3) and applying the afore-mentioned inequality to the eigenvectors of \(\rho ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}\) allows us to prove the desired Claim 3 of Proposition 4.

1.8 Appendix I.8 Proving Claim 4

Let \(|{h}\rangle \) be an eigenvector of \(\rho ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}\). For a pseudosubpartition , define

$$\begin{aligned} \epsilon _{{\mathbf{x}} , (T_1, \ldots , T_m)}(|{h}\rangle ) :=\left\| {\Pi ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}}_{Y_{{\mathbf{x}} , (T_1, \ldots , T_m)}} |{h}\rangle }\right\| _2^2 \end{aligned}$$

where the subspace \(Y_{{\mathbf{x}} , (T_1, \ldots , T_m)} \le ({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}\) is defined just after Equation (A4). Recall that the subspace \(Y'_{{\mathbf{x}} , {\mathbf{l}} ,\delta }\) defined in Equation (A8) is the A-tilted span of where the tilting matrix A is defined in Equation (A5). Recall that A is upper triangular, substochastic, and diagonal dominated, and the diagonal entries of A satisfy

for all . By Proposition 3

Using Equation (A4) and applying this inequality to the eigenvectors of \(\rho ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}\), we get

Finally, using Fact 3 and Equation (A9), we get

$$\begin{aligned}&{\mathrm{Tr}}\,[(\Pi ')_{{\mathbf{x}} , {\mathbf{l}} ,\delta }^{A''_{[k]}} (\rho ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k})] \\&\quad = {\mathrm{Tr}}\,[(\Pi ')^{A''_{[k]}}_{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}} ({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} , {\mathbf{l}} , \delta }}) \\&\qquad (\rho ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}) ({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }}) \\&\qquad (\Pi ')^{A''_{[k]}}_{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}}] \\&\quad \ge 1 -4 ({\mathrm{Tr}}\,[(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }} (\rho ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k})] \\&\qquad +1 -{\mathrm{Tr}}\,[(\Pi ')^{A''_{[k]}}_{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes [k]}} (\rho ^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k})]) \\&\quad > 1 -4 (\delta ^{-2k} 2^{2^{ck+3} (k+1)^k}\epsilon _{\mathbf{x} }) \ge 1 - \delta ^{-2k} 2^{2^{ck+4} (k+1)^k} \epsilon _{\mathbf{x} }. \end{aligned}$$

1.9 Appendix I.9 Proving Claim 5

This claim and the accompanying claims of orthogonality and vanishing of \(\beta _{(S_1, \ldots , S_l),\delta }\) are proved at the end of Appendix I.4.

1.10 Appendix I.10 Proving Claim 6

Using Equations (A9), (A8), (A7), and (A4), we get

$$\begin{aligned}&{\mathrm{Tr}}\,[(\Pi ')_{{\mathbf{x}} ,{\mathbf{l}} ,\delta }^{A''_{[k]}} ({\mathcal {T}}_{(S_1, \ldots S_l), {\mathbf{l}} , \delta } (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}))^{A''_{[k]}}] \\&\quad = {\mathrm{Tr}}\,[(\Pi ')^{A''_{[k]}}_{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}} ({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }}) \\&\quad ({\mathcal {T}}_{(S_1, \ldots S_l), {\mathbf{l}} , \delta } (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}))^{A''_{[k]}} \\&\qquad ({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }}) (\Pi ')^{A''_{[k]}}_{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}}] \\&\quad \le {\mathrm{Tr}}\,[({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }}) \\&\qquad ({\mathcal {T}}_{(S_1, \ldots S_l), {\mathbf{l}} , \delta } (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}))^{A''_{[k]}} \\&\qquad ({\mathbb {1}}^{A''_{[k]}} -(\Pi ')^{A''_{[k]}}_{Y'_{{\mathbf{x}} ,{\mathbf{l}} , \delta }})] \\&\quad \le {\mathrm{Tr}}\,[({\mathbb {1}}^{A''_{[k]}} -\Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l), {\mathbf{l}} ,\delta }(Y_{{\mathbf{x}} ,(S_1, \ldots , \cup S_l)})}) \\&\qquad ({\mathcal {T}}_{(S_1, \ldots S_l), {\mathbf{l}} , \delta } (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}))^{A''_{[k]}} \\&\qquad ({\mathbb {1}}^{A''_{[k]}} -\Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l), {\mathbf{l}} ,\delta }(Y_\mathbf{x ,(S_1, \ldots , \cup S_l)})})] \\&\quad = {\mathrm{Tr}}\,[({\mathbb {1}}^{A''_{[k]}} -\Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l), {\mathbf{l}} ,\delta }(Y_{{\mathbf{x}} ,(S_1, \ldots , \cup S_l)})}) \Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l),{\mathbf{l}} ,\delta }(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k})} \\&\qquad ({\mathcal {T}}_{(S_1, \ldots S_l), {\mathbf{l}} , \delta } (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}))^{A''_{[k]}} \\&\qquad \Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l),{\mathbf{l}} ,\delta } (({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k})} ({\mathbb {1}}^{A''_{[k]}} -\Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l), {\mathbf{l}} ,\delta }(Y_{{\mathbf{x}} ,(S_1, \ldots , \cup S_l)})})] \\&\quad = {\mathrm{Tr}}\,[(\Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l), {{\mathbf{l}}} ,\delta }(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k})} -\Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l),{\mathbf{l}} ,\delta } (Y_{{\mathbf{x}} ,(S_1, \ldots , \cup S_l)})}) \\&\qquad ({\mathcal {T}}_{(S_1, \ldots S_l), {\mathbf{l}} , \delta } (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k})) \\&\qquad (\Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l), {\mathbf{l}} ,\delta }(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k})} -\Pi ^{A''_{[k]}}_{{\mathcal {T}}_{(S_1,\ldots ,S_l),{\mathbf{l}} ,\delta } (Y_{{\mathbf{x}} ,(S_1, \ldots , S_l)})})] \\&\quad = {\mathrm{Tr}}\,[{\mathcal {T}}_{(S_1, \ldots S_l), {\mathbf{l}} , \delta } (({\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}} -\Pi ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}}_{Y_{{\mathbf{x}} ,(S_1, \ldots , \cup S_l)}}) \\&\qquad (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}) \\&\qquad ({\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}} -\Pi ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}}_{Y_{{\mathbf{x}} ,(S_1, \ldots , \cup S_l)}}))] \\&\quad = {\mathrm{Tr}}\,[({\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}} -\Pi ^{({\mathcal {H}}\otimes \mathbb {C}^2)^{\otimes k}}_{Y_{{\mathbf{x}} ,(S_1, \ldots , \cup S_l)}}) \\&\qquad (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}) \\&\qquad ({\mathbb {1}}^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}} -\Pi ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}}_{Y_{{\mathbf{x}} ,(S_1, \ldots , \cup S_l)}})] \\&\quad = {\mathrm{Tr}}\,[\Pi ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}}_{{\mathbf{x}} , (S_1,\ldots ,S_l)} (\rho _{{\mathbf{x}} ,(S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k}) \Pi ^{({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}}_{{\mathbf{x}} ,(S_1,\ldots ,S_l)}] \\&\quad \le 2^{-D_H^{\epsilon _{{\mathbf{x}} ,(S_1, \ldots , S_l)}} (\rho _{\mathbf{x}} ^{A_{[k]}} \Vert \rho _{{\mathbf{x}} , (S_1, \ldots , S_l)}^{A_{[k]}})}. \end{aligned}$$

In the second inequality here, we used the fact that

$$\begin{aligned} {\mathcal {T}}_{(S_1,\ldots ,S_l),{\mathbf{l}} ,\delta } (Y_{{\mathbf{x}} , (S_1, \ldots , \cup S_l)}) \le Y'_{{\mathbf{x}} , {\mathbf{l}} ,\delta }. \end{aligned}$$

In the second equality here, we used the property that the support of \( {\mathcal {T}}_{S_1, \ldots S_l), {\mathbf{l}} , \delta } ( \rho _{{\mathbf{x}} , (S_1, \ldots , S_l)}^{A_{[k]}} \otimes (|{0}\rangle \langle {0}|^{{\mathbb {C}}^2})^{\otimes k} ) \) lies in the vector space \( {\mathcal {T}}_{(S_1,\ldots ,S_l),\mathbf{l} ,\delta }(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k}). \) We used the property that the map \( {\mathcal {T}}_{(S_1, \ldots S_l), {\mathbf{l}} , \delta } \) is an isometric embedding of \(({\mathcal {H}}\otimes {\mathbb {C}}^2)^{\otimes k})\) in the fourth and fifth equalities. Finally, we used the definition of \( Y_{{\mathbf{x}} ,(S_1, \ldots , \cup S_l)} \) given just after Equation (A4) for obtaining the last equality.

This completes the proof of Claim 6 of Proposition 4 and thus finishes the proof of Proposition 4.

Appendix II. Proof of Equation (2)

The probability of incorrectly decoding the sent message pair \((m_1,m_2)\), for a given codebook \({\mathcal {C}}\), is upper bounded by

$$\begin{aligned}&p_e({\mathcal {C}}; m_1, m_2) \\&\quad \le \sum _z p(z | x(m_1), y(m_2)) \\&\qquad \sum _{(\hat{m}_1, \hat{m}_2): (\hat{m}_1, \hat{m}_2) \prec (m_1, m_2)} f(x(\hat{m}_1), y(\hat{m}_2), z) \\&\qquad +\sum _z p(z | x(m_1), y(m_2)) (1 - f(x(m_1), y(m_2), z)) \\&\quad \le \sum _z p(z | x(m_1), y(m_2)) \\&\qquad \sum _{(\hat{m}_1, \hat{m}_2): (\hat{m}_1, \hat{m}_2) \ne (m_1, m_2)} f(x(\hat{m}_1), y(\hat{m}_2), z) \\&\qquad +\sum _z p(z | x(m_1), y(m_2)) (1 - f(x(m_1), y(m_2), z)) \\&\quad = \sum _z p(z | x(m_1), y(m_2)) \sum _{(\hat{m}_1, \hat{m}_2): \hat{m}_1 \ne m_1, \hat{m}_2 \ne m_2} f(x(\hat{m}_1), y(\hat{m}_2), z) \\&\qquad +\sum _z p(z | x(m_1), y(m_2)) \sum _{\hat{m}_2:\hat{m}_2 \ne m_2} f(x(m_1), y(\hat{m}_2), z) \\&\qquad +\sum _z p(z | x(m_1), y(m_2)) \sum _{\hat{m}_1:\hat{m}_1 \ne m_1} f(x(\hat{m}_1), y(m_2), z) \\&\qquad + \sum _z p(z | x(m_1), y(m_2)) (1 - f(x(m_1), y(m_2), z)). \end{aligned}$$

The expectation, over the choice of the random codebook \({\mathcal {C}}\), of the decoding error is then upper bounded by

$$\begin{aligned}&\mathop {\mathbf{E}}\limits_{{\mathcal {C}}}[p_e({\mathcal {C}}; m_1, m_2)] \\&\quad \le (2^{R_1} - 1) (2^{R_2} - 1) \\&\qquad \sum _{x,y,z} p(x) p(y) p(z | x, y) \sum _{x', y'} p(x') p(y') f(x', y', z) \\&\qquad +(2^{R_2} - 1) \sum _{x,y,z} p(x) p(y) p(z | x, y) \sum _{y'} p(y') f(x, y', z) \\&\qquad + (2^{R_1} - 1) \sum _{x,y,z} p(x) p(y) p(z | x, y) \sum _{x'} p(x') f(x', y, z) \\&\qquad + \sum _{x,y,z} p(x) p(y) p(z | x, y) (1 - f(x, y, z)) \\&\quad \overset{a}{\le } (2^{R_1} - 1) (2^{R_2} - 1) \\&\qquad \sum _{x,y,z} p(x) p(y) p(z | x, y) \sum _{x', y'} p(x') p(y') f^{X,Y}(x', y', z) \\&\qquad +(2^{R_2} - 1) \sum _{x,y,z} p(x) p(y) p(z | x, y) \sum _{y'} p(y') f^Y(x, y', z) \\&\qquad + (2^{R_1} - 1) \sum _{x,y,z} p(x) p(y) p(z | x, y) \sum _{x'} p(x') f^X(x', y, z) \\&\qquad + \sum _{x,y,z} p(x) p(y) p(z | x, y) ((1 - f^X(x, y, z)) \\&\qquad + (1 - f^Y(x, y, z)) + (1 - f^{X,Y}(x, y, z))) \\&\quad = (2^{R_1} - 1) (2^{R_2} - 1) \sum _{x', y', z} p(x') p(y') p(z) f^{X,Y}(x', y', z) \\&\quad + (2^{R_2} - 1) \sum _{x, y', z} p(y') p(x) p(z | x) f^Y(x, y', z) \\&\qquad + (2^{R_1} - 1) \sum _{x', y, z} p(x') p(y) p(z | y) f^X(x', y, z) \\&\qquad + \sum _{x,y,z} p(x) p(y) p(z | x, y) ((1 - f^X(x, y, z)) \\&\qquad + (1 - f^Y(x, y, z)) + (1 - f^{X,Y}(x, y, z))) \\&\quad \overset{b}{\le } 2^{R_1 + R_2} 2^{-I^\epsilon _H(X Y : Z)} + 2^{R_2} 2^{-I^\epsilon _H(Y : X Z)} + 2^{R_1} 2^{-I^\epsilon _H(X : Y Z)} + 3 \epsilon . \end{aligned}$$

Here, we use the property that

$$\begin{aligned} f(x,y,z)\le & {} \{f^X(x,y,z), f^Y(x,y,z), f^{X,Y}(x,y,z)\}, \\ 1 - f(x,y,z)\le & {} (1 - f^X(x,y,z)) + (1 - f^Y(x,y,z)) \\&+ (1 - f^{X,Y}(x,y,z)) \end{aligned}$$

for all triples (xyz) in Step (a), and Equation (1) in Step (b).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P. Unions, intersections and a one-shot quantum joint typicality lemma. Sādhanā 46, 57 (2021). https://doi.org/10.1007/s12046-020-01555-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-020-01555-3

Keywords

Navigation