Abstract
Functional connectivity networks, derived from resting-state fMRI data, have been found as effective biomarkers for identifying mild cognitive impairment (MCI) from healthy elderly. However, the traditional functional connectivity network is essentially a low-order network with the assumption that the brain activity is static over the entire scanning period, ignoring temporal variations among the correlations derived from brain region pairs. To overcome this limitation, we proposed a new type of sparse functional connectivity network to precisely describe the relationship of temporal correlations among brain regions. Specifically, instead of using the simple pairwise Pearson’s correlation coefficient as connectivity, we first estimate the temporal low-order functional connectivity for each region pair based on an ULS Group constrained-UOLS regression algorithm, where a combination of ultra-least squares (ULS) criterion with a Group constrained topology structure detection algorithm is applied to detect the topology of functional connectivity networks, aided by an Ultra-Orthogonal Least Squares (UOLS) algorithm to estimate connectivity strength. Compared to the classical least squares criterion which only measures the discrepancy between the observed signals and the model prediction function, the ULS criterion takes into consideration the discrepancy between the weak derivatives of the observed signals and the model prediction function and thus avoids the overfitting problem. By using a similar approach, we then estimate the high-order functional connectivity from the low-order connectivity to characterize signal flows among the brain regions. We finally fuse the low-order and the high-order networks using two decision trees for MCI classification. Experimental results demonstrate the effectiveness of the proposed method on MCI classification.
Similar content being viewed by others
References
Akhoondzadeh, M. (2016). Decision tree, bagging and random forest methods detect TEC seismo-ionospheric anomalies around the time of the Chile, (M-w=8.8) earthquake of 27 February 2010. Advances in Space Research, 57(12), 2464–2469. https://doi.org/10.1016/j.asr.2016.03.035.
Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663–676. https://doi.org/10.1093/cercor/bhs352.
Alzheimer's Association. (2015). 2015 Alzheimer's disease facts and figures. Alzheimers & Dementia, 11(3), 332–384. https://doi.org/10.1016/j.jalz.2015.02.003.
Amezquita-Sanchez, J. P., Adeli, A., & Adeli, H. (2016). A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG). Behavioural Brain Research, 305, 174–180. https://doi.org/10.1016/j.bbr.2016.02.035.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1023/A:1018054314350.
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer's disease. Alzheimers & Dementia, 3(3), 186–191. https://doi.org/10.1016/j.jalz.2007.04.381.
Bullmore, E. T., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575.
Chand, G., Wu, J., Hajjar, I., & Qiu, D. (2017). Interactions of the salience network and its subsystems with the default-mode and the central-executive networks in normal aging and mild cognitive impairment. Brain Connectivity, 7, 401–412. https://doi.org/10.1089/brain.2017.0509.
Chen, X. B., Xiao, Y., Cai, Y. F., & Chen, L. (2014). Structural max-margin discriminant analysis for feature extraction. Knowledge-Based Systems, 70, 154–166. https://doi.org/10.1016/j.knosys.2014.06.020.
Chen, X. B., Zhang, H., Gao, Y., Wee, C. Y., Li, G., & Shen, D. G. (2016). High-order resting-state functional connectivity network for MCI classification. Human Brain Mapping, 37(9), 3282–3296. https://doi.org/10.1002/hbm.23240.
Chen, X. B., Zhang, H., Zhang, L. C., Shen, C., Lee, S. W., & Shen, D. G. (2017). Extraction of dynamic functional connectivity from brain Grey matter and white matter for MCI classification. Human Brain Mapping, 38(10), 5019–5034. https://doi.org/10.1002/hbm.23711.
Chen, L., Zhang, H., Lu, J., Thung, K., Aibaidula, A., Liu, L., Chen, S., Jin, L., Wu, J., Wang, Q., Zhou, L., & Shen, D. (2018). Multi-label nonlinear matrix completion with Transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas. IEEE Transactions on Medical Imaging, 37(8), 1775–1787. https://doi.org/10.1109/tmi.2018.2807590.
Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M. O., et al. (2011). Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database. Neuroimage, 56(2), 766–781. https://doi.org/10.1016/j.neuroimage.2010.06.013.
Das, K., Rana, S., & Roy, S. (2018). Evaluation of Alzheimer's disease progression based on clinical dementia rating scale with missing responses and covariates. Journal of Biopharmaceutical Statistics, 28(5), 893–908. https://doi.org/10.1080/10543406.2017.1402780.
Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2011). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32(12), 2322.e19–2322.e27. https://doi.org/10.1016/j.neurobiolaging.2010.05.023.
Du, A. T., Schuff, N., Amend, D., Laakso, M. P., Hsu, Y. Y., Jagust, W. J., et al. (2001). Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. Journal of Neurology Neurosurgery and Psychiatry, 71(4), 441–447. https://doi.org/10.1136/jnnp.71.4.441.
Eshkoor, S. A., Hamid, T. A., Mun, C. Y., & Ng, C. K. (2015). Mild cognitive impairment and its management in older people. Clinical Interventions in Aging, 10, 687. https://doi.org/10.2147/CIA.S73922.
Fan, Y., Gur, R. E., Gur, R. C., Wu, X. Y., Shen, D. G., Calkins, M. E., & Davatzikos, C. (2008). Unaffected family members and schizophrenia patients share brain structure patterns: A high-dimensional pattern classification study. Biological Psychiatry, 63(1), 118-124. https://doi.org/10.1016/j.biopsych.2007.03.015.
Fornito, A., Zalesky, A., & Bullmore, E. T. (2010). Network scaling effects in graph analytic studies of human resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 22. https://doi.org/10.3389/fnsys.2010.00022.
Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., Belleville, S., Brodaty, H., Bennett, D., Chertkow, H., Cummings, J. L., de Leon, M., Feldman, H., Ganguli, M., Hampel, H., Scheltens, P., Tierney, M. C., Whitehouse, P., & Winblad, B. (2006). Mild cognitive impairment. Lancet, 367(9518), 1262–1270. https://doi.org/10.1016/S0140-6736(06)68542-5.
Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4), 424–430. https://doi.org/10.1097/WCO.0b013e328306f2c5.
Guo, Y. Z., Guo, L. Z., Billings, S. A., & Wei, H. L. (2016). Ultra-orthogonal forward regression algorithms for the identification of non-linear dynamic systems. Neurocomputing, 173, 715–723. https://doi.org/10.1016/j.neucom.2015.08.022.
Haufe, S., Nolte, G., Mueller, K. R., & Kraemer, N. (2008). Sparse causal discovery in multivariate time series. In NIPS workshop on causality, 6, 97–106.
Haussmann, R., Werner, A., Gruschwitz, A., Osterrath, A., Lange, J., Donix, K. L., Linn, J., & Donix, M. (2017). Precuneus structure changes in amnestic mild cognitive impairment. American Journal of Alzheimers Disease and Other Dementias, 32(1), 22–26. https://doi.org/10.1177/1533317516678087.
Hu, K., Wang, Y. J., Chen, K. W., Hou, L. K., & Zhang, X. Q. (2016). Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis. Neurocomputing, 175, 132–145. https://doi.org/10.1016/j.neucom.2015.10.043.
Huang, S. A., Li, J., Sun, L., Ye, J. P., Fleisher, A., Wu, T., et al. (2010). Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. Neuroimage, 50(3), 935–949. https://doi.org/10.1016/j.neuroimage.2009.12.120.
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., Handwerker, D. A., Keilholz, S., Kiviniemi, V., Leopold, D. A., de Pasquale, F., Sporns, O., Walter, M., & Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage, 80, 360–378. https://doi.org/10.1016/j.neuroimage.2013.05.079.
Jain, D., & Singh, V. (2018). Feature selection and classification systems for chronic disease prediction: A review. Egyptian Informatics Journal, 19(3), 179–189. https://doi.org/10.1016/j.eij.2018.03.002.
Jaroudi, W., Garami, J., Garrido, S., Hornberger, M., Keri, S., & Moustafa, A. A. (2017). Factors underlying cognitive decline in old age and Alzheimer's disease: The role of the hippocampus. Reviews in the Neurosciences, 28, 705–714. https://doi.org/10.1515/revneuro-2016-0086.
Jie, B., Shen, D. G., & Zhang, D. Q. (2014). Brain connectivity hyper-network for MCI classification. In International conference on medical image computing and computer-assisted intervention, 8674, 724–732.
Jie, B., Wee, C. Y., Shen, D., & Zhang, D. Q. (2016). Hyper-connectivity of functional networks for brain disease diagnosis. Medical Image Analysis, 32, 84–100. https://doi.org/10.1016/j.media.2016.03.003.
Josef Golubic, S., Aine, C. J., Stephen, J. M., Adair, J. C., Knoefel, J. E., & Supek, S. (2017). MEG biomarker of Alzheimer's disease: Absence of a prefrontal generator during auditory sensory gating. Human Brain Mapping, 38, 5180–5194. https://doi.org/10.1002/hbm.23724.
Khazaee, A., Ebrahimzadeh, A., & Babajani-Feremi, A. (2015). Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory. Clinical Neurophysiology, 126(11), 2132–2141. https://doi.org/10.1016/j.clinph.2015.02.060.
Khazaee, A., Ebrahimzadeh, A., & Babajani-Feremi, A. (2016). Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Brain Imaging and Behavior, 10(3), 799–817. https://doi.org/10.1007/s11682-015-9448-7.
Khazaee, A., Ebrahimzadeh, A., & Babajani-Feremi, A. (2017). Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Behavioural Brain Research, 322, 339–350. https://doi.org/10.1016/j.bbr.2016.06.043.
Lee, H., Lee, D. S., Kang, H., Kim, B. N., & Chung, M. K. (2011). Sparse brain network recovery under compressed sensing. IEEE Transactions on Medical Imaging, 30(5), 1154–1165. https://doi.org/10.1109/Tmi.2011.2140380.
Lee, W. H., Bullmore, E., & Frangou, S. (2017). Quantitative evaluation of simulated functional brain networks in graph theoretical analysis. Neuroimage, 146, 724–733. https://doi.org/10.1016/j.neuroimage.2016.08.050.
Lennartz, C., Schiefer, J., Rotter, S., Hennig, J., & LeVan, P. (2018). Sparse estimation of resting-state effective connectivity from fMRI cross-spectra. Frontiers in Neuroscience, 12, 19. https://doi.org/10.3389/fnins.2018.00287.
Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J. M., Schluep, M., Vuilleumier, P., & van de Ville, D. (2013). Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest. Neuroimage, 83, 937–950. https://doi.org/10.1016/j.neuroimage.2013.07.019.
Li, Y., Jewells, V., Kim, M., Chen, Y. S., Moon, A., Armao, D., et al. (2013). Diffusion tensor imaging based network analysis detects alterations of Neuroconnectivity in patients with clinically early relapsing-remitting multiple sclerosis. Human Brain Mapping, 34(12), 3376–3391. https://doi.org/10.1002/hbm.22158.
Li, Y., Wee, C. Y., Jie, B., Peng, Z. W., & Shen, D. G. (2014). Sparse multivariate autoregressive modeling for mild cognitive impairment classification. Neuroinformatics, 12(3), 455–469. https://doi.org/10.1007/s12021-014-9221-x.
Li, Y., Wang, X., Luo, L., Li, K., Yang, X., & Guo, Q. (2017). Epileptic seizure classification of eegs using time-frequency analysis based multiscale radial basis functions. IEEE Journal of Biomedical and Health Informatics, 22(2), 386–397. https://doi.org/10.1109/JBHI.2017.2654479.
Li, Y., Cui, W. G., Guo, Y. Z., Huang, T., Yang, X. F., & Wei, H. L. (2018a). Time-varying system identification using an ultra-orthogonal forward regression and multiwavelet basis functions with applications to EEG. IEEE Transactions on Neural Networks & Learning Systems, 29(7), 2960–2972. https://doi.org/10.1109/TNNLS.2017.2709910.
Li, Y., Cui, W. G., Luo, M. L., Li, K., & Wang, L. N. (2018b). Epileptic seizure detection based on time-frequency images of EEG signals using gaussian mixture model and gray level co-occurrence matrix features. International Journal of Neural Systems, 28(7), 1850003. https://doi.org/10.1142/S012906571850003X.
Li, Y., Liu, J., Huang, J., Li, Z., & Liang, P. (2018c). Learning brain connectivity sub-networks by group- constrained sparse inverse covariance estimation for Alzheimer's disease classification. Frontiers in Neuroinformatics, 12. https://doi.org/10.3389/fninf.2018.00058.
Li, Y., Yang, H., Lei, B., Liu, J., & Wee, C.-Y. (2018d). Novel effective connectivity inference using ultra-group constrained orthogonal forward regression and elastic multilayer perceptron classifier for MCI identification. IEEE Transactions on Medical Imaging, 1. https://doi.org/10.1109/tmi.2018.2882189.
Li, Y., Cui, W. G., Huang, H., Guo, Y. Z., Li, K., & Tan, T. (2019a). Epileptic seizure detection in EEG signals using sparse multiscale radial basis function networks and the Fisher vector approach. Knowledge-Based Systems, 164(15), 96–106. https://doi.org/10.1016/j.knosys.2018.10.029.
Li, Y., Liu, J., Gao, X., Jie, B., Kim, M., Yap, P.-T., Wee, C. Y., & Shen, D. (2019b). Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification. Medical Image Analysis, 52, 80–96. https://doi.org/10.1016/j.media.2018.11.006.
Liao, X. H., Vasilakos, A. V., & He, Y. (2017). Small-world human brain networks: Perspectives and challenges. Neuroscience and Biobehavioral Reviews, 77, 286–300. https://doi.org/10.1016/j.neubiorev.2017.03.018.
Liu, F., Wee, C. Y., Chen, H. F., & Shen, D. G. (2014). Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification. Neuroimage, 84, 466–475. https://doi.org/10.1016/j.neuroimage.2013.09.015.
Liu, F., Wang, Y. F., Li, M. L., Wang, W. Q., Li, R., Zhang, Z. Q., et al. (2017). Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure. Human Brain Mapping, 38(2), 957–973. https://doi.org/10.1002/hbm.23430.
Mao, H. F., Chang, L. H., Tsai, A. Y. J., Huang, W. N. W., Tang, L. Y., Lee, H. J., Sun, Y., Chen, T. F., Lin, K. N., Wang, P. N., Shyu, Y. I. L., & Chiu, M. J. (2018). Diagnostic accuracy of instrumental activities of daily living for dementia in community-dwelling older adults. Age and Ageing, 47(4), 551–557. https://doi.org/10.1093/ageing/afy021.
Matsuda, H. (2013). Voxel-based morphometry of brain MRI in normal aging and Alzheimer's disease. Aging and Disease, 4(1), 29–37.
McKenna, F., Koo, B. B., & Killiany, R. (2016). Comparison of ApoE-related brain connectivity differences in early MCI and normal aging populations: An fMRI study. Brain Imaging and Behavior, 10(4), 970–983. https://doi.org/10.1007/s11682-015-9451-z.
McKenzie, D. P., Downing, M. G., & Ponsford, J. L. (2018). Key Hospital Anxiety and Depression Scale (HADS) items associated with DSM-IV depressive and anxiety disorder 12-months post traumatic brain injury. Journal of Affective Disorders, 236, 164–171. https://doi.org/10.1016/j.jad.2018.04.092.
Mi, Z. P., Abrahamson, E. E., Ryu, A. Y., Fish, K. N., Sweet, R. A., Mufson, E. J., et al. (2017). Loss of precuneus dendritic spines immunopositive for spinophilin is related to cognitive impairment in early Alzheimer's disease. Neurobiology of Aging, 55, 159–166. https://doi.org/10.1016/j.neurobiolaging.2017.01.022.
NeuroimageFagiolo, G. (2007). Clustering in complex directed networks. Physical Review E, 76(2), 026107. https://doi.org/10.1103/PhysRevE.76.026107.
Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. https://doi.org/10.1111/j.1365-2796.2004.01388.x.
Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992. https://doi.org/10.1001/archneur.58.12.1985.
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678. https://doi.org/10.1016/j.neuron.2011.09.006.
Qi, Z. G., Wu, X., Wang, Z. Q., Zhang, N., Dong, H. Q., Yao, L., et al. (2010). Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage, 50(1), 48–55. https://doi.org/10.1016/j.neuroimage.2009.12.025.
Ribeiro, L. G., & Busatto Filho, G. (2016). Voxel-based morphometry in Alzheimers disease and mild cognitive impairment: Systematic review of studies addressing the frontal lobe. Dementia & Neuropsychologia, 10(2), 104–112. https://doi.org/10.1590/s1980-5764-2016dn1002006.
Rosa, M. J., Portugal, L., Hahn, T., Fallgatter, A. J., Garrido, M. I., Shawe-Taylor, J., & Mourao-Miranda, J. (2015). Sparse network-based models for patient classification using fMRI. Neuroimage, 105, 493–506. https://doi.org/10.1016/j.neuroimage.2014.11.021.
Rose, S. E., Mcmahon, K. L., Janke, A. L., O'Dowd, B., De, Z. G., Strudwick, M. W., et al. (2006). Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnesic mild cognitive impairment. Journal of Neurology Neurosurgery & Psychiatry, 77(10), 1122–1128. https://doi.org/10.1136/jnnp.2005.074336.
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003.
Ryali, S., Chen, T. W., Supekar, K., & Menon, V. (2012). Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty. Neuroimage, 59(4), 3852–3861. https://doi.org/10.1016/j.neuroimage.2011.11.054.
Salvatore, C., Cerasa, A., Battista, P., Gilardi, M. C., Quattrone, A., & Castiglioni, I. (2015). Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: A machine learning approach. Frontiers in Neuroscience, 9. https://doi.org/10.3389/fnins.2015.00307.
Sandanalakshmi, R., & Sardius, V. (2016). Selected saliency based analysis for the diagnosis of Alzheimer's disease using structural magnetic resonance image. Journal of Medical Imaging and Health Informatics, 6(1), 177–184. https://doi.org/10.1166/jmihi.2016.1610.
Shah, S. A. A., Aziz, W., Arif, M., & Nadeem, M. S. A. Decision Trees based Classification of Cardiotocograms using Bagging Approach. In 13th International Conference on Frontiers of Information Technology, New York, 2015 (pp. 12–17): IEEE. https://doi.org/10.1109/fit.2015.14.
Suk, H. I., Lee, S. W., & Shen, D. G. (2014). Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage, 101, 569–582. https://doi.org/10.1016/j.neuroimage.2014.06.077.
Sun, G. H., Raji, C. A., MacEachern, M. P., & Burke, J. F. (2012). Olfactory identification testing as a predictor of the development of Alzheimer's dementia: A systematic review. Laryngoscope, 122(7), 1455–1462. https://doi.org/10.1002/lary.23365.
Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Computational Biology, 4(6), e1000100. https://doi.org/10.1371/journal.pcbi.1000100.
Sze, C. I., Troncoso, J. C., Kawas, C., Mouton, P., Price, D. L., & Martin, L. J. (1997). Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 56(8), 933–944. https://doi.org/10.1097/00005072-199708000-00011.
Takahashi, M., Oda, Y., Okubo, T., & Shirayama, Y. (2017). Relationships between cognitive impairment on ADAS-cog and regional cerebral blood flow using SPECT in late-onset Alzheimer's disease. Journal of Neural Transmission, 124(9), 1109–1121. https://doi.org/10.1007/s00702-017-1734-7.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978.
Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008.
Van Patten, R., Britton, K., & Tremont, G. (2018). Comparing the mini-mental state examination and the modified mini-mental state examination in the detection of mild cognitive impairment in older adults. International Psychogeriatrics, 1, 1–9. https://doi.org/10.1017/s1041610218001023.
Vasavada, M. M., Wang, J. L., Eslinger, P. J., Gill, D. J., Sun, X. Y., Karunanayaka, P., et al. (2015). Olfactory cortex degeneration in Alzheimer's disease and mild cognitive impairment. Journal of Alzheimers Disease, 45(3), 947–958. https://doi.org/10.3233/Jad-141947.
Wang, L., Xue, W., Li, Y., Luo, M., Huang, J., Cui, W., & Huang, C. (2017). Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy, 19(6). https://doi.org/10.3390/e19060222.
Wee, C. Y., Yap, P. T., Denny, K., Browndyke, J. N., Potter, G. G., Welsh-Bohmer, K. A., Wang, L., & Shen, D. (2012a). Resting-state multi-Spectrum functional connectivity networks for identification of MCI patients. PLoS One, 7(5), 11. https://doi.org/10.1371/journal.pone.0037828.
Wee, C. Y., Yap, P. T., Zhang, D. Q., Denny, K., Browndyke, J. N., Potter, G. G., et al. (2012b). Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 59(3), 2045–2056. https://doi.org/10.1016/j.neuroimage.2011.10.015.
Wee, C. Y., Yap, P. T., Zhang, D. Q., Wang, L. H., & Shen, D. G. (2014). Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Structure & Function, 219(2), 641–656. https://doi.org/10.1007/s00429-013-0524-8.
Wee, C. Y., Yang, S., Yap, P. T., & Shen, D. G. (2016). Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging and Behavior, 10(2), 342–356. https://doi.org/10.1007/s11682-015-9408-2.
Xu, L. L., Wu, X., Li, R., Chen, K. W., Long, Z. Y., Zhang, J. C., et al. (2016). Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers. Journal of Alzheimers Disease, 51(4), 1045–1056. https://doi.org/10.3233/Jad-151010.
Zhang, J. H., Chen, M., Zhao, S. K., Hu, S. Q., Shi, Z. G., & Cao, Y. (2016). ReliefF-based EEG sensor selection methods for emotion recognition. Sensors, 16(10). https://doi.org/10.3390/s16101558.
Zhou, L. P., Wang, L., Liu, L. Q., Ogunbona, P., & Shen, D. G. (2013). Discriminative brain effective connectivity analysis for Alzheimer's disease: A kernel learning approach upon sparse Gaussian Bayesian network. 2013 IEEE conference on computer vision and pattern recognition, 2243–2250, https://doi.org/10.1109/Cvpr.2013.291, 2013.
Zhu, X. F., Suk, H. I., & Shen, D. G. (2014). A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. Neuroimage, 100, 91–105. https://doi.org/10.1016/j.neuroimage.2014.05.078.
Zhu, Y. Y., Zhu, X. F., Zhang, H., Gao, W., Shen, D. G., & Wu, G. R. (2016). Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism Spectrum disorder identification. International conference on medical image computing and computer-assisted intervention, 9900, 106–114, https://doi.org/10.1007/978-3-319-46720-7_13.
Ziegler-Graham, K., Brookmeyer, R., Johnson, E., & Arrighi, H. M. (2008). Worldwide variation in the doubling time of Alzheimer's disease incidence rates. Alzheimers & Dementia, 4(5), 316–323. https://doi.org/10.1016/j.jalz.2008.05.2479.
Acknowledgements
This work was supported by the National Natural Science Foundation of China [U1809209, 61671042, 61403016, 31871113], Beijing Natural Science Foundation [L182015, 4172037], and Open Fund Project of Fujian Provincial Key Laboratory in Minjiang University [MJUKF201702]. An earlier version of this paper was presented at the International Workshop on Machine Learning in Medical Imaging (MLMI 2017).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Ethical Approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by the local ethical committee.
Informed Consent
Informed consent was obtained from all individual participants included in the study.
Conflict of Interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
The weak derivative and Ultra-Least Squares Criterion
A linear system with k inputs and one output can be described by a linear regression model below:
where y(t) and xi(t) denote the system output and input variables, θi is the system parameter, and e is the system noise. For this system, the ordinary least squares regression problem can be solved via the least squares criterion as follows:
where t ∈ [0, T], y(t) and xi(t) are time dependent signals with finite amplitude on the interval [0, T], and thus y(t) and xi(t) are L2 integrable functions belong to the Lebesgue space L2([0, T]), where L2([0, T]) = {x(t)| ∫[0, T]|x(t)|2dt < + ∞}. Supposing \( \widehat{y}(t) \) is prediction function of y(t), it is obvious that the least squares criterion only measures the discrepancy between y(t) and \( \widehat{y}(t) \) on the whole interval [0, T], ignoring how the discrepancy distributes at every individual time point. Therefore, the least squares criterion cannot accurately describe the similarity of function shapes and discards the information of correlations among data points, leading to a common overfitting problem for identification of the dynamic system (Li et al. 2018a; Guo et al. 2016).
In order to overcome this limitation, we integrate a weak derivative part into the least squares criterion to construct an ULS criterion:
where Dl is the l-th order weak derivative (l = 1, 2, … , L). The weak derivative, which measures interconnections among the data points, is a generalization of the derivative that is in the usual sense. Different from the derivatives which can be calculated only for the differentiable functions, the weak derivatives can be calculated for all integrable functions. Supposing that x(t) belong to the Lebesgue space L2([0, T]), the l-th order weak derivative of x(t) is defined as the function Dlx(t)ϵL2([0, T]) which satisfies
for all infinitely differentiable functions φ(t) with φ(0) = φ(T) = 0. As discussed in (Guo et al. 2016), the regression model fitted by weak derivatives takes into account the relationship among data points and is therefore more effective and accurate. Given discrete observations of the system signals, {y(j)}, {xi(j)}, j = 1, 2, … , J, the l-th order weak derivative can be calculated as
where φ(t) (t ∈ [0, J0]) is the test function, which is l-th order derivable on the interval [0, J0], φ(l)(t) denotes the l-th order derivative of the φ(t). Due to the l-th order weak derivative (l = 1, 2, … , L) of original signals is used in this work, the test function is required to have L-th order derivative. Therefore, the (L + 1)-th order B-spline basis function which satisfies the above condition is adopted as the test function in this paper. More details of B-spline basis function and weak derivative can be found at Guo et al. (2016).
The Lebesgue space L2([0, T]) = {x(t)| ∫[0, T]|x(t)|2dt < + ∞} is a function space, in which the functions are L2 integrable (i.e. the l2-norm of the function is finite). Meanwhile, the Sobolev space HL([0, T]) = {x(t)| x(t) ∈ L2([0, T]), Dlx ∈ L2([0, T]), l = 1, 2, ⋯, L} is a subspace of L2([0, T]), in which not only the functions but also the l-th order weak derivatives of the functions (l = 1, 2, … , L) are L2 integrable (i.e. belong to L2([0, T])). The definition of Sobolev space HL([0, T]) can also be written as
The least squares criterion only needs to calculate l2-norm of the discrepancy between the observed signal y(t) and the model prediction function \( {\sum}_{i=1}^k{\theta}_i{x}_i(t) \), and thus is defined in the Lebesgue space L2([0, T]). However, the ULS criterion calculate not only the l2-norm of the discrepancy between y(t) and \( {\sum}_{i=1}^k{\theta}_i{x}_i(t) \), but also the l2-norm of the discrepancy between the weak derivatives of y(t) and \( {\sum}_{i=1}^k{\theta}_i{x}_i(t) \). Therefore, the weak derivatives of y(t) and \( {\sum}_{i=1}^k{\theta}_i{x}_i(t) \) are required to belong to L2([0, T]), and further the functions y(t) and xi(t) of the ULS criterion are required to belong to HL([0, T]). For these reasons, the ULS criterion is defined in the Sobolev space HL([0, T]).
The fMRI time series is a low-frequency signal with finite energy. Thus, the fMRI time series and its weak derivatives are L2 integrable functions (i.e. belong to L2([0, T])). The fMRI time series can be further considered as the discrete observations of the signals belonging to HL([0, T]). Therefore, the ULS criterion is applicable to the study of fMRI time series.
The new criterion considers not only the discrepancy between the observed signal and the model prediction function, but also the discrepancy between their weak derivatives. Thus, the ULS criterion is a more accurate evaluation standard for the model fitness. Essentially, the ULS criterion is the combination of the least squares criterion with the weak derivative of the original signals. By connecting the original signals y(t) and xi(t) with their weak derivatives Dly(t) and Dlxi(t)(l = 1, 2, … , L), we generate the corresponding ultra-signals \( \overset{\sim }{y}(t)={\left[{\left(y(t)\right)}^T,{\left({D}^1y(t)\right)}^T,{\left({D}^2y(t)\right)}^T,\dots, {\left({D}^Ly(t)\right)}^T\right]}^T \) and \( {\overset{\sim }{x}}_i(t)={\left[{\left({x}_i(t)\right)}^T,{\left({D}^1{x}_i(t)\right)}^T,{\left({D}^2{x}_i(t)\right)}^T,\dots, {\left({D}^L{x}_i(t)\right)}^T\right]}^T \), and Eq. (13) can be rewritten as
Therefore, we can integrate the ULS criterion into our proposed framework by incorporating the weak derivatives into the original time series.
Rights and permissions
About this article
Cite this article
Li, Y., Liu, J., Peng, Z. et al. Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification. Neuroinform 18, 1–24 (2020). https://doi.org/10.1007/s12021-019-09418-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-019-09418-x