Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Edge-Centered DTI Connectivity Analysis: Application to Schizophrenia

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) provides connectivity information that helps illuminate the processes underlying normal development as well as brain disorders such as autism and schizophrenia. Researchers have widely adopted graph representations to model DTI connectivity among brain structures; however, most measures of connectivity have been centered on nodes, rather than edges, in these graphs. We present an edge-based algorithm for assessing anatomic connectivity; this approach provides information about connections among brain structures, rather than information about structures themselves. This perspective allows us to formulate multivariate graph-based models of altered connectivity that distinguish among experimental groups. We demonstrate the utility of this approach by analyzing data from an ongoing study of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayling, E., Aghajani, M., Fouche, J. P., & van der Wee, N. (2012). Diffusion tensor imaging in anxiety disorders. Current Psychiatry Reports, 14, 197–202.

    Article  PubMed  Google Scholar 

  • Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34, 144–155.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan, C. R., Pernet, C. R., Gorgolewski, K. J., Storkey, A. J., & Bastin, M. E. (2014). Test-retest reliability of structural brain networks from diffusion MRI. NeuroImage, 86, 231–243.

    Article  PubMed  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.

    Article  CAS  PubMed  Google Scholar 

  • Cascio, C. J., Gerig, G., & Piven, J. (2007). Diffusion tensor imaging: application to the study of the developing brain. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 213–223.

    Article  PubMed  Google Scholar 

  • Crofts, J. J., & Higham, D. J. (2009). A weighted communicability measure applied to complex brain networks. Journal of The Royal Society Interface, 6, 411–414.

    Article  PubMed Central  Google Scholar 

  • Crossley, N. A., Mechelli, A., Fusar‐Poli, P., Broome, M. R., Matthiasson, P., Johns, L. C., et al. (2009). Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first‐episode psychosis. Human brain mapping, 30, 4129–4137.

    Article  PubMed  Google Scholar 

  • Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532–542.

    Article  PubMed  Google Scholar 

  • Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y., & Le Bihan, D. (2006). Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. NeuroImage, 30, 1121–1132.

    Article  CAS  PubMed  Google Scholar 

  • Eluvathingal, T. J., Hasan, K. M., Kramer, L., Fletcher, J. M., & Ewing-Cobbs, L. (2007). Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. Cerebral Cortex, 17, 2760–2768.

    Article  PubMed Central  PubMed  Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, P., McKenna, P. J., Friston, K. J., Frith, C. D., & Dolan, R. J. (1999). Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. NeuroImage, 9, 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62, 2296–2314.

    Article  PubMed  Google Scholar 

  • Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., et al. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 19067–10972.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23, 341–350.

    PubMed  Google Scholar 

  • Heckerman, D., Geiger, D., & Chickering, D. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20, 197–243.

    Google Scholar 

  • Huang, C., & Darwiche, A. (1996). Inference in belief networks: a procedural guide. International Journal of Approximate Reasoning, 15(3), 225–263.

    Article  Google Scholar 

  • Hüppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11, 489–497.

    Article  PubMed  Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62, 782–790.

    Article  PubMed  Google Scholar 

  • Kasprian, G., Brugger, P. C., Weber, M., Krssak, M., Krampl, E., Herold, C., & Prayer, D. (2008). In utero tractography of fetal white matter development. NeuroImage, 43, 213–224.

    Article  PubMed  Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.

    Article  Google Scholar 

  • Keefe, R. S., Goldberg, T. E., Harvey, P. D., Gold, J. M., Poe, M. P., & Coughenour, L. (2004). The brief assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia Research, 68, 283–297.

    Article  PubMed  Google Scholar 

  • Knowles, E. E., David, A. S., & Reichenberg, A. (2010). Processing speed deficits in schizophrenia: reexamining the evidence. American Journal of Psychiatry, 167, 828–835.

    Article  PubMed  Google Scholar 

  • Konrad, A., & Winterer, G. (2008). Disturbed structural connectivity in schizophrenia—primary factor in pathology or epiphenomenon? Schizophrenia Bulletin, 34, 72–92.

    Article  PubMed Central  PubMed  Google Scholar 

  • Korgaonkar, M. S., Cooper, N. J., Williams, L. M., & Grieve, S. M. (2012). Mapping inter-regional connectivity of the entire cortex to characterize major depressive disorder: a whole-brain diffusion tensor imaging tractography study. Neuroreport, 23, 566–571.

    Article  PubMed  Google Scholar 

  • Liao, W., Zhang, Z., Pan, Z., Mantini, D., Ding, J., Duan, X., et al. (2011). Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Human Brain Mapping, 32, 883–895.

    Article  PubMed  Google Scholar 

  • Makris, N., Papadimitriou, G. M., van der Kouwe, A., Kennedy, D. N., Hodge, S. M., Dale, A. M., et al. (2007). Frontal connections and cognitive changes in normal aging rhesus monkeys: A DTI study. Neurobiology of Aging, 28, 1556–1567.

    Article  PubMed  Google Scholar 

  • Meyer-Lindenberg, A., Poline, J.-B., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. American Journal of Psychiatry, 158, 1809–1817.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15, 1–25.

    Article  PubMed  Google Scholar 

  • NIH. (2013). The NIH Blueprint for Neuroscience Research: The Human Connectome Project. http://www.neuroscienceblueprint.nih.gov/connectome.

  • Overall, J. E., & Gorham, D. R. (1962). The brief psychiatric rating scale. Psychological Reports, 10, 799–812.

    Article  Google Scholar 

  • Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.

  • Scutari, M. (2009). Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv:0908.3817.

  • Sexton, C. E., Mackay, C. E., & Ebmeier, K. P. (2009). A systematic review of diffusion tensor imaging studies in affective disorders. Biological Psychiatry, 66, 814–823.

    Article  PubMed  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.

    Article  PubMed  Google Scholar 

  • Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker’s guide to diffusion tensor imaging. Frontiers in Neuroscience, 7, 31.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sporns, O. (2011). Networks of the brain. Cambridge: MIT Press.

    Google Scholar 

  • Testaverde, L., Caporali, L., Venditti, E., Grillea, G., & Colonnese, C. (2012). Diffusion tensor imaging applications in multiple sclerosis patients using 3T magnetic resonance: a preliminary study. European Radiology, 22, 990–997.

    Article  PubMed  Google Scholar 

  • Toga, A. W., Clark, K. A., Thompson, P. M., Shattuck, D. W., & Van Horn, J. D. (2012). Mapping the human connectome. Neurosurgery, 71, 1–5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Travers, B. G., Adluru, N., Ennis, C., Tromp, D. P. M., Destiche, D., Doran, S., et al. (2012). Diffusion tensor imaging in autism spectrum disorder: a review. Autism Research, 5, 289–313.

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Su, T.-P., Zhou, Y., Chou, K.-H., Chen, I. Y., Jiang, T., & Lin, C.-P. (2012). Anatomical insights into disrupted small-world networks in schizophrenia. NeuroImage, 59, 1085–1093.

    Article  PubMed  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Wechsler, D. (1997). Manual for the Wechsler adult intelligence scale—third edition (WAIS III). San Antonio, Texas: The Psychological Corporation.

    Google Scholar 

  • Wheeler, A. L., Chakravarty, M. M., Lerch, J. P., Pipitone, J., Daskalakis, Z. J., Rajji, T. K., et al. (2014). Disrupted prefrontal interhemispheric structural coupling in schizophrenia related to working memory performance. Schizophrenia Bulletin, 40(4), 914–924.

    Article  PubMed Central  PubMed  Google Scholar 

  • White, T., Nelson, M., & Lim, K. O. (2008). Diffusion tensor imaging in psychiatric disorders. Topics in Magnetic Resonance Imaging, 19, 97–109.

    Article  PubMed  Google Scholar 

  • Ystad, M., Hodneland, E., Adolfsdottir, S., Haasz, J., Lundervold, A. J., Eichele, T., & Lundervold, A. (2011). Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. NeuroImage, 55, 24–31.

    Article  PubMed  Google Scholar 

  • Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53(4), 1197–1207.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Institutes of Health (R01MH085646, P50MH103222, and R01DA027680 to LEH) and by the University of Maryland’s Center for Health Informatics and Bioimaging, and the State of Maryland MPower initiative (to EHH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Herskovits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herskovits, E.H., Hong, L.E., Kochunov, P. et al. Edge-Centered DTI Connectivity Analysis: Application to Schizophrenia. Neuroinform 13, 501–509 (2015). https://doi.org/10.1007/s12021-015-9273-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-015-9273-6

Keywords

Navigation