Abstract
Diffusion tensor imaging (DTI) provides connectivity information that helps illuminate the processes underlying normal development as well as brain disorders such as autism and schizophrenia. Researchers have widely adopted graph representations to model DTI connectivity among brain structures; however, most measures of connectivity have been centered on nodes, rather than edges, in these graphs. We present an edge-based algorithm for assessing anatomic connectivity; this approach provides information about connections among brain structures, rather than information about structures themselves. This perspective allows us to formulate multivariate graph-based models of altered connectivity that distinguish among experimental groups. We demonstrate the utility of this approach by analyzing data from an ongoing study of schizophrenia.
Similar content being viewed by others
References
Ayling, E., Aghajani, M., Fouche, J. P., & van der Wee, N. (2012). Diffusion tensor imaging in anxiety disorders. Current Psychiatry Reports, 14, 197–202.
Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34, 144–155.
Buchanan, C. R., Pernet, C. R., Gorgolewski, K. J., Storkey, A. J., & Bastin, M. E. (2014). Test-retest reliability of structural brain networks from diffusion MRI. NeuroImage, 86, 231–243.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.
Cascio, C. J., Gerig, G., & Piven, J. (2007). Diffusion tensor imaging: application to the study of the developing brain. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 213–223.
Crofts, J. J., & Higham, D. J. (2009). A weighted communicability measure applied to complex brain networks. Journal of The Royal Society Interface, 6, 411–414.
Crossley, N. A., Mechelli, A., Fusar‐Poli, P., Broome, M. R., Matthiasson, P., Johns, L. C., et al. (2009). Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first‐episode psychosis. Human brain mapping, 30, 4129–4137.
Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532–542.
Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y., & Le Bihan, D. (2006). Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. NeuroImage, 30, 1121–1132.
Eluvathingal, T. J., Hasan, K. M., Kramer, L., Fletcher, J. M., & Ewing-Cobbs, L. (2007). Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. Cerebral Cortex, 17, 2760–2768.
Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.
Fletcher, P., McKenna, P. J., Friston, K. J., Frith, C. D., & Dolan, R. J. (1999). Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. NeuroImage, 9, 337–342.
Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62, 2296–2314.
Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., et al. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 19067–10972.
He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23, 341–350.
Heckerman, D., Geiger, D., & Chickering, D. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20, 197–243.
Huang, C., & Darwiche, A. (1996). Inference in belief networks: a procedural guide. International Journal of Approximate Reasoning, 15(3), 225–263.
Hüppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11, 489–497.
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62, 782–790.
Kasprian, G., Brugger, P. C., Weber, M., Krssak, M., Krampl, E., Herold, C., & Prayer, D. (2008). In utero tractography of fetal white matter development. NeuroImage, 43, 213–224.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.
Keefe, R. S., Goldberg, T. E., Harvey, P. D., Gold, J. M., Poe, M. P., & Coughenour, L. (2004). The brief assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia Research, 68, 283–297.
Knowles, E. E., David, A. S., & Reichenberg, A. (2010). Processing speed deficits in schizophrenia: reexamining the evidence. American Journal of Psychiatry, 167, 828–835.
Konrad, A., & Winterer, G. (2008). Disturbed structural connectivity in schizophrenia—primary factor in pathology or epiphenomenon? Schizophrenia Bulletin, 34, 72–92.
Korgaonkar, M. S., Cooper, N. J., Williams, L. M., & Grieve, S. M. (2012). Mapping inter-regional connectivity of the entire cortex to characterize major depressive disorder: a whole-brain diffusion tensor imaging tractography study. Neuroreport, 23, 566–571.
Liao, W., Zhang, Z., Pan, Z., Mantini, D., Ding, J., Duan, X., et al. (2011). Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Human Brain Mapping, 32, 883–895.
Makris, N., Papadimitriou, G. M., van der Kouwe, A., Kennedy, D. N., Hodge, S. M., Dale, A. M., et al. (2007). Frontal connections and cognitive changes in normal aging rhesus monkeys: A DTI study. Neurobiology of Aging, 28, 1556–1567.
Meyer-Lindenberg, A., Poline, J.-B., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. American Journal of Psychiatry, 158, 1809–1817.
Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15, 1–25.
NIH. (2013). The NIH Blueprint for Neuroscience Research: The Human Connectome Project. http://www.neuroscienceblueprint.nih.gov/connectome.
Overall, J. E., & Gorham, D. R. (1962). The brief psychiatric rating scale. Psychological Reports, 10, 799–812.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
Scutari, M. (2009). Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv:0908.3817.
Sexton, C. E., Mackay, C. E., & Ebmeier, K. P. (2009). A systematic review of diffusion tensor imaging studies in affective disorders. Biological Psychiatry, 66, 814–823.
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.
Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker’s guide to diffusion tensor imaging. Frontiers in Neuroscience, 7, 31.
Sporns, O. (2011). Networks of the brain. Cambridge: MIT Press.
Testaverde, L., Caporali, L., Venditti, E., Grillea, G., & Colonnese, C. (2012). Diffusion tensor imaging applications in multiple sclerosis patients using 3T magnetic resonance: a preliminary study. European Radiology, 22, 990–997.
Toga, A. W., Clark, K. A., Thompson, P. M., Shattuck, D. W., & Van Horn, J. D. (2012). Mapping the human connectome. Neurosurgery, 71, 1–5.
Travers, B. G., Adluru, N., Ennis, C., Tromp, D. P. M., Destiche, D., Doran, S., et al. (2012). Diffusion tensor imaging in autism spectrum disorder: a review. Autism Research, 5, 289–313.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.
Wang, Q., Su, T.-P., Zhou, Y., Chou, K.-H., Chen, I. Y., Jiang, T., & Lin, C.-P. (2012). Anatomical insights into disrupted small-world networks in schizophrenia. NeuroImage, 59, 1085–1093.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.
Wechsler, D. (1997). Manual for the Wechsler adult intelligence scale—third edition (WAIS III). San Antonio, Texas: The Psychological Corporation.
Wheeler, A. L., Chakravarty, M. M., Lerch, J. P., Pipitone, J., Daskalakis, Z. J., Rajji, T. K., et al. (2014). Disrupted prefrontal interhemispheric structural coupling in schizophrenia related to working memory performance. Schizophrenia Bulletin, 40(4), 914–924.
White, T., Nelson, M., & Lim, K. O. (2008). Diffusion tensor imaging in psychiatric disorders. Topics in Magnetic Resonance Imaging, 19, 97–109.
Ystad, M., Hodneland, E., Adolfsdottir, S., Haasz, J., Lundervold, A. J., Eichele, T., & Lundervold, A. (2011). Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. NeuroImage, 55, 24–31.
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53(4), 1197–1207.
Acknowledgments
This work is supported by the National Institutes of Health (R01MH085646, P50MH103222, and R01DA027680 to LEH) and by the University of Maryland’s Center for Health Informatics and Bioimaging, and the State of Maryland MPower initiative (to EHH).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Herskovits, E.H., Hong, L.E., Kochunov, P. et al. Edge-Centered DTI Connectivity Analysis: Application to Schizophrenia. Neuroinform 13, 501–509 (2015). https://doi.org/10.1007/s12021-015-9273-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-015-9273-6