Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Exploring the role of computer vision in product design and development: a comprehensive review

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Computer vision technologies have altered Product design and development, which have replaced old manual procedures. This study thoroughly examines computer vision’s role in affecting product design, examining its historical history, applications, and ramifications. The background emphasizes the constraints of traditional design, underlining the necessity for creative alternatives. Integrating computer vision aligns with Industry 4.0 trends, which call for smart and automated design procedures. The investigation delves into the growth of computer vision, its applications in quality control, design optimization, augmented/virtual reality, user interface design, and cultural/language acquisition. The article also looks into the relationship between computer vision and consumer analysis. The content analysis reduces 285 author keywords to 31 interrelated keywords that comprise five clusters. The conclusion emphasizes the social effect, promising more accessible, efficient, and innovative design processes. This multidisciplinary study dives into computer vision in product design and development by doing a thorough analysis of a variety of datasets. Examining three datasets with 285, 1066, and 1190 terms yields important results. The findings highlight the importance of “Product Design” and “Computer Vision” with changing patterns and concentrations across datasets. Thematic studies reveal repeating focus elements in titles and abstracts, such as “Design” and “Vision,” indicating a technological emphasis, human-centric concerns, and practical consequences. Network investigations reveal complex linkages and clustering within keyword networks, allowing for more in-depth knowledge of specific areas. These findings help to understand the dynamic interaction of computer vision and product design, driving future research and innovation in this rapidly growing sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Zhou, L., Zhang, L., Konz, N.: Computer vision techniques in manufacturing. IEEE Trans. Syst. Man Cybern. Syst. 53, 105–117 (2023). https://doi.org/10.1109/TSMC.2022.3166397

    Article  Google Scholar 

  2. Yang, Y., Deng, H.: EPformer: an efficient transformer-based approach for retail product detection in fisheye images. J. Electron. Imaging (2023). https://doi.org/10.1117/1.JEI.32.1.013017

    Article  Google Scholar 

  3. Wang, Y., Han, Y., Chen, J., Wang, Z., Zhong, Y.: An FPGA-based hardware low-cost, low-consumption target-recognition and sorting system. World Electr. Veh. J. (2023). https://doi.org/10.3390/wevj14090245

    Article  Google Scholar 

  4. Moragane, H.P.M.N.L.B., Perera, B.A.K.S., Palihakkara, A.D., Ekanayake, B.: Application of computer vision for construction progress monitoring: a qualitative investigation. Constr. Innov.Innov. (2022). https://doi.org/10.1108/CI-05-2022-0130

    Article  Google Scholar 

  5. Sönmez, N.O.: A review of the use of examples for automating architectural design tasks. CAD Comput. Aid. Des. 96, 13–30 (2018). https://doi.org/10.1016/j.cad.2017.10.005

    Article  Google Scholar 

  6. López, A., Valveny, E., Villanueva, J.J.: Real-time quality control of surgical material packaging by artificial vision. Assem. Autom. 25, 223–229 (2005). https://doi.org/10.1108/01445150510610944

    Article  Google Scholar 

  7. Zhu, D., Liu, G.: Deep neural network model-assisted reconstruction and optimization of Chinese characters in product packaging graphic patterns and visual styling design. Sci. Program. (2022). https://doi.org/10.1155/2022/1219802

    Article  Google Scholar 

  8. Su, Z., Yu, S., Chu, J., Zhai, Q., Gong, J., Fan, H.: A novel architecture: using convolutional neural networks for Kansei attributes automatic evaluation and labeling. Adv. Eng. Inf. (2020). https://doi.org/10.1016/j.aei.2020.101055

    Article  Google Scholar 

  9. Rački, D., Tomaževič, D., Skočaj, D.: Detection of surface defects on pharmaceutical solid oral dosage forms with convolutional neural networks. Neural Comput. Appl. 34, 631–650 (2022). https://doi.org/10.1007/s00521-021-06397-6

    Article  Google Scholar 

  10. Xiao, K., Ni, T.: Computer-aided industrial product design based on image enhancement algorithm and convolutional neural network. Comput.-Aid. Des. Appl. 21, 92–106 (2024). https://doi.org/10.14733/cadaps.2024.S3.92-106

    Article  Google Scholar 

  11. Taati, B., Snoek, J., Mihailidis, A.: Video analysis for identifying human operation difficulties and faucet usability assessment. Neurocomputing 100, 163–169 (2013)

    Article  Google Scholar 

  12. Pace, B., Cavallo, D.P., Cefola, M., Colella, R., Attolico, G.: Adaptive self-configuring computer vision system for quality evaluation of fresh-cut radicchio. Innov. Food Sci. Emerg. Technol.. Food Sci. Emerg. Technol. 32, 200–207 (2015). https://doi.org/10.1016/j.ifset.2015.10.001

    Article  Google Scholar 

  13. Kapetanios, E.: Quo Vadis computer science: from turing to personal computer, personal content and collective intelligence. Data Knowl. Eng. 67, 286–292 (2008)

    Article  Google Scholar 

  14. Deshpande, A., Patavardhan, P., Rao, D.H.: Super resolution based low cost vision system. In: Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2015 (2016)

  15. Mukhanov, S.B., Uskenbayeva, R.: Pattern recognition with using effective algorithms and methods of computer vision library. In: Proceedings of the Advances in Intelligent Systems and Computing, pp. 810–819 (2020)

  16. Ye, Z., Yin, H., Ye, Y.: Multiple scale comparative analysis of classical, dynamic and intelligent edge detection schemes. In: Proceedings of the Communications in Computer and Information Science, pp. 207–221 (2023)

  17. Banerjee, D., Yu, K., Aggarwal, G.: Object tracking test automation using a robotic arm. IEEE Access 6, 56378–56394 (2018). https://doi.org/10.1109/ACCESS.2018.2873284

    Article  Google Scholar 

  18. Wu, X., Wang, X.: Stable line and circle detection method in noise image for machine vision. In: Proceedings of the 2021 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2021, pp. 1277–1282 (2021)

  19. Yang, B., Du, X., Fang, Y., Li, P., Wang, Y.: Review of rigid object pose estimation from a single image. J. Image Graph. 26, 334–354 (2021). https://doi.org/10.11834/jig.200037

    Article  Google Scholar 

  20. Avanzato, R.L.: Deep learning projects for multidisciplinary engineering design students. In: Proceedings of the ASEE Annual Conference and Exposition, Conference Proceedings (2023)

  21. Chugh, G., Kumar, S., Singh, N.: MSTLA: multi-stage transfer learning approach for breast carcinoma diagnosis. In: Proceedings of the 2023 International Conference on Advancement in Computation and Computer Technologies, InCACCT 2023, pp. 509–514 (2023)

  22. Solunke, B.R., Gengaje, S.R.: A Review on traditional and deep learning based object detection methods. In: Proceedings of the 2023 International Conference on Emerging Smart Computing and Informatics, ESCI 2023 (2023)

  23. Baur, C., Albarqouni, S., Demirci, S., Navab, N., Fallavollita, P.: Cathnets: detection and single-view depth prediction of catheter electrodes. In: Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 38–49 (2016)

  24. Cheng, J., Li, H., Li, D., Hua, S., Sheng, V.S.: A survey on image semantic segmentation using deep learning techniques. Comput. Mater. Contin. 74, 1941–1957 (2023). https://doi.org/10.32604/cmc.2023.032757

    Article  Google Scholar 

  25. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3523–3542 (2022). https://doi.org/10.1109/TPAMI.2021.3059968

    Article  Google Scholar 

  26. Restrepo-Rodríguez, A.O., Casas-Mateus, D.E., Gaona-García, P.A., Montenegro-Marín, C.E.: Image recognition model over augmented reality based on convolutional neural networks through color-space segmentation. In: Proceedings of the Advances in Intelligent Systems and Computing, pp. 326–338 (2020)

  27. Alsalamah, M.S.I.: Automatic face mask identification in saudi smart cities: using technology to prevent the spread of COVID-19. Inf. Sci. Lett. 12, 2411–2422 (2023). https://doi.org/10.18576/isl/120617

    Article  Google Scholar 

  28. Tsai, Y., Wei, C.C.: Accelerated disaster reconnaissance using automatic traffic sign detection with UAV and AI. In: Proceedings of the Computing in Civil Engineering 2019: Smart Cities, Sustainability, and Resilience—Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2019, pp. 405–411 (2019)

  29. Yamini, B., Jayaprakash, M., Logesswari, S., Ulagamuthalvi, V., Porselvi, R., Uthayakumar, G.S.: Enhanced Expectation-maximization algorithm for smart traffic IoT systems using deep generative adversarial networks to reduce waiting time. In: Proceedings of the 2023 4th International Conference on Electronics and Sustainable Communication Systems, ICESC 2023—Proceedings, pp. 380–385 (2023)

  30. Zheng, Q., Hou, Y., Yang, H., Tan, P., Shi, H., Xu, Z., Ye, Z., Chen, N., Qu, X., Han, X., et al.: Towards a sustainable monitoring: a self-powered smart transportation infrastructure skin. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107245

    Article  Google Scholar 

  31. Trenz, M., Berger, B: Analyzing online customer reviews-an interdisciplinary literature review and research agenda (2013)

  32. Siva Subramanian, R., Girija, P., Anuradha, M., Dinesh, M.G., Aswini, J., Divya, P.: Heterogeneous ensemble variable selection to improve customer prediction using naive bayes model. Int. J. Recent. Innov. Trend. Comput. Commun. 11, 64–71 (2023). https://doi.org/10.17762/ijritcc.v11i5s.6599

    Article  Google Scholar 

  33. Saba, N.S., Gandhi, R., Rajendran, S., Abraham, N.D.: Revolutionizing digital marketing using machine learning. In: Contemporary Approaches of Digital Marketing and the Role of Machine Intelligence; IGI Global, pp. 1–22 (2023)

  34. Alves Gomes, M., Meisen, T.: A review on customer segmentation methods for personalized customer targeting in e-commerce use cases. Inf. Syst. e-Bus. Manage. 21, 527–570 (2023). https://doi.org/10.1007/s10257-023-00640-4

    Article  Google Scholar 

  35. Sioma, A.: Vision system in product quality control systems. Appl. Sci. 13, 751 (2023)

    Article  Google Scholar 

  36. Živković, M., Žujović, M., Milošević, J.: Architectural 3D-printed structures created using artificial intelligence: a review of techniques and applications. Appl. Sci. (2023). https://doi.org/10.3390/app131910671

    Article  Google Scholar 

  37. Wang, W.C., Ahn, E., Feng, D., Kim, J.: A review of predictive and contrastive self-supervised learning for medical images. Mach. Intell. Res. 20, 483–513 (2023). https://doi.org/10.1007/s11633-022-1406-4

    Article  Google Scholar 

  38. Khalil, C., Zarabi, S., Kirkham, K., Soni, V., Li, Q., Huszti, E., Yadollahi, A., Taati, B., Englesakis, M., Singh, M.: Validity of non-contact methods for diagnosis of obstructive sleep Apnea: a systematic review and meta-analysis. J. Clin. Anesth.Clin. Anesth. (2023). https://doi.org/10.1016/j.jclinane.2023.111087

    Article  Google Scholar 

  39. Martins, J.R., Lambe, A.B.: Multidisciplinary design optimization: a survey of architectures. AIAA J. 51, 2049–2075 (2013)

    Article  Google Scholar 

  40. Kelley, T.R.: Optimization, an important stage of engineering design. Technol. Teach. 69, 18 (2010)

    Google Scholar 

  41. Wang, G.G.: Definition and review of virtual prototyping. J. Comput. Inf. Sci. Eng. 2, 232–236 (2002)

    Article  Google Scholar 

  42. Allmacher, C., Dudczig, M., Klimant, P., Putz, M.: Virtual prototyping technologies enabling resource-efficient and human-centered product development. Proc. Manuf. 21, 749–756 (2018)

    Google Scholar 

  43. Aromaa, S., Leino, S.-P., Viitaniemi, J.: Virtual prototyping in human-machine interaction design. VTT Technol. 185 (2014)

  44. Yang, M.-T., Liao, W.-C.: Computer-assisted culture learning in an online augmented reality environment based on free-hand gesture interaction. IEEE Trans. Learn. Technol. 7, 107–117 (2014)

    Article  Google Scholar 

  45. Mehmood, K., Bao, Y., Cheng, W., Khan, M.A., Siddique, N., Abrar, M.M., Soban, A., Fahad, S., Naidu, R.: Predicting the quality of air with machine learning approaches: current research priorities and future perspectives. J. Clean. Prod. 379, 134656 (2022). https://doi.org/10.1016/j.jclepro.2022.134656

    Article  Google Scholar 

  46. Company, P., Varley, P.A., Plumed, R.: An algorithm for grouping lines which converge to vanishing points in perspective sketches of polyhedra. In Proceedings of the Graphics Recognition. Current Trends and Challenges: 10th International Workshop, GREC 2013, Bethlehem, PA, USA, August 20–21, 2013, Revised Selected Papers 10, pp. 77–95 (2014)

  47. Zhang, D., Lee, D.-J., Taylor, B.: Seeing Eye Phone: a smart phone-based indoor localization and guidance system for the visually impaired. Mach. Vis. Appl. 25, 811–822 (2014)

    Article  Google Scholar 

  48. Heimberger, M., Horgan, J., Hughes, C., McDonald, J., Yogamani, S.: Computer vision in automated parking systems: design, implementation and challenges. Image Vis. Comput. 68, 88–101 (2017)

    Article  Google Scholar 

  49. Sönmez, N.O.: A review of the use of examples for automating architectural design tasks. Comput. Aided Des. 96, 13–30 (2018)

    Article  Google Scholar 

  50. Machado, A., Veras, R., Aires, K., Neto, L.D.S.B.: A systematic review on product recognition for aiding visually impaired people. IEEE Latin Am. Trans. 19, 592–603 (2021)

    Article  Google Scholar 

  51. Lu, G.: Construction of home product design system based on self-encoder depth neural network. Comput. Intell. Neurosci.. Intell. Neurosci. (2022). https://doi.org/10.1155/2022/8331504

    Article  Google Scholar 

  52. Li, R., Wang, C.: Cultural and creative product design and image recognition based on deep learning. Comput. Intell. Neurosci.. Intell. Neurosci. (2022). https://doi.org/10.1155/2022/7256584

    Article  Google Scholar 

  53. Zhang, G., Liu, J.: Intelligent vehicle modeling design based on image processing. Int. J. Adv. Rob. Syst. 18, 1729881421993347 (2021)

    Google Scholar 

  54. Su, Z., Yu, S., Chu, J., Zhai, Q., Gong, J., Fan, H.: A novel architecture: Using convolutional neural networks for Kansei attributes automatic evaluation and labeling. Adv. Eng. Inform. 44, 101055 (2020)

    Article  Google Scholar 

  55. Wang, W., Zou, J., Fang, Y.: Design and evaluation of a somatosensory hat: an emotional semantic perspective. AATCC J. Res. 8, 20–29 (2021)

    Article  Google Scholar 

  56. Abbas, A., Chalup, S.: Affective analysis of visual scenes using face pareidolia and scene-context. Neurocomputing 437, 72–83 (2021)

    Article  Google Scholar 

  57. He, Y., Zhang, Z., Nan, X., Zhang, N., Guo, F., Rosales, E., Guan, L.: vConnect: perceive and interact with real world from CAVE. Multimed. Tools Appl. 76, 1479–1508 (2017)

    Article  Google Scholar 

  58. Mehmood, K., Chang, S., Yu, S., Wang, L., Li, P., Li, Z., Liu, W., Rosenfeld, D., Seinfeld, J.H.: Spatial and temporal distributions of air pollutant emissions from open crop straw and biomass burnings in China from 2002 to 2016. Environ. Chem. Lett. 16, 301–309 (2018). https://doi.org/10.1007/s10311-017-0675-6

    Article  Google Scholar 

  59. Yang, X., He, H., Wu, Y., Tang, C., Chen, H., Liang, J.: User intent perception by gesture and eye tracking. Cogent Eng. 3, 1221570 (2016)

    Article  Google Scholar 

  60. Papadopoulos, S.-I., Koutlis, C., Papadopoulos, S., Kompatsiaris, I.: Multimodal Quasi-autoregression: forecasting the visual popularity of new fashion products. Int. J. Multimed. Inf. Retr. 11, 717–729 (2022)

    Article  Google Scholar 

  61. Wang, Q., Liu, X., Liu, W., Liu, A.-A., Liu, W., Mei, T.: Metasearch: Incremental product search via deep meta-learning. IEEE Trans. Image Process. 29, 7549–7564 (2020)

    Article  Google Scholar 

  62. Wang, Q., Liu, X., Liu, W., Liu, A.-A., Liu, W., Mei, T.: MetaSearch: incremental product search via deep meta-learning. Trans. Img. Proc. 29, 7549–7564 (2020). https://doi.org/10.1109/TIP.2020.3004249

    Article  Google Scholar 

  63. Yang, X., He, H., Wu, Y., Tang, C., Chen, H., Liang, J.: User intent perception by gesture and eye tracking. Cogent Eng. (2016). https://doi.org/10.1080/23311916.2016.1221570

    Article  Google Scholar 

  64. Papadopoulos, S.-I., Koutlis, C., Papadopoulos, S., Kompatsiaris, I.: Multimodal Quasi-AutoRegression: forecasting the visual popularity of new fashion products. Int. J. Multimed. Inf. Retr. (2022). https://doi.org/10.1007/s13735-022-00262-5

    Article  Google Scholar 

  65. Chiou, R., Mookiah, P., Kwon, Y.: Manufacturing e-quality through integrated web-enabled computer vision and robotics. Int. J. Adv. Manuf. Technol. 43, 720–730 (2009). https://doi.org/10.1007/s00170-008-1747-3

    Article  Google Scholar 

  66. Jiang, C., Yang, J., Zhang, L., Wang, X.: A high-precision hand-held face detection system. J. Multimed. 8, 256 (2013)

    Article  Google Scholar 

  67. Song, H.: IOT-oriented visual target tracking and supply chain art product design. Mob. Inf. Syst. (2022). https://doi.org/10.1155/2022/3773469

    Article  Google Scholar 

  68. Ziaratban, A., Azadbakht, M., Ghasemnezhad, A.: Modeling of volume and surface area of apple from their geometric characteristics and artificial neural network. Int. J. Food Prop. 20, 762–768 (2017)

    Article  Google Scholar 

  69. James, M.R., Chandler, J.H., Eltner, A., Fraser, C., Miller, P.E., Mills, J.P., Noble, T., Robson, S., Lane, S.N.: Guidelines on the use of structure-from-motion photogrammetry in geomorphic research. Earth. Surf. Proc. Land. 44, 2081–2084 (2019)

    Article  Google Scholar 

  70. Liu, C., Pan, Z., Zhang, C., Miao, W.: Nonheritage creative product design and development and marketing strategies for computer vision and user experience. Secur. Commun. Netw. (2022). https://doi.org/10.1155/2022/9685280

    Article  Google Scholar 

  71. Papachristou, E., Chrysopoulos, A., Bilalis, N.: Machine learning for clothing manufacture as a mean to respond quicker and better to the demands of clothing brands: a Greek case study. Int. J. Adv. Manuf. Technol. 115, 691–702 (2021)

    Article  Google Scholar 

  72. Llave, Y., Fukuda, S., Fukuoka, M., Shibata-Ishiwatari, N., Sakai, N.: Analysis of color changes in chicken egg yolks and whites based on degree of thermal protein denaturation during ohmic heating and water bath treatment. J. Food Eng. 222, 151–161 (2018)

    Article  Google Scholar 

  73. Huynh, T.T., TonThat, L., Dao, S.V.: A vision-based method to estimate volume and mass of fruit/vegetable: case study of sweet potato. Int. J. Food Prop. 25, 717–732 (2022)

    Article  Google Scholar 

  74. Pace, B., Cavallo, D.P., Cefola, M., Colella, R., Attolico, G.: Adaptive self-configuring computer vision system for quality evaluation of fresh-cut radicchio. Innov. Food Sci. Emerg. Technol. 32, 200–207 (2015)

    Article  Google Scholar 

  75. Gupta, K., Körber, M., Djavadifar, A., Krebs, F., Najjaran, H.: Wrinkle and boundary detection of fiber products in robotic composites manufacturing. Assem. Autom. 40, 283–291 (2020)

    Article  Google Scholar 

  76. Hwang, S., Choi, Y., Koo, S.: Shape reconstruction and inspection using multi-planar X-ray images. Int. J. Precis. Eng. Manuf. 15, 1545–1551 (2014)

    Article  Google Scholar 

  77. Shi, Z., Ma, Y., Fu, M.: Fuzzy support tensor product adaptive image classification for the internet of things. Comput. Intell. Neurosci.. Intell. Neurosci. (2022). https://doi.org/10.1155/2022/3532605

    Article  Google Scholar 

  78. Cao, M.W., Li, S.J., Jia, W., Liu, X.P.: A survey on feature tracking methods for SFM. Jisuanji Xuebao 41, 2536–2565 (2018). https://doi.org/10.11897/SP.J.1016.2018.02536

    Article  Google Scholar 

  79. García-Ruiz, P., Muñoz-Salinas, R., Medina-Carnicer, R., Marín-Jiménez, M.J.: Object localization with multiplanar fiducial markers: accurate pose estimation. In: Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 454–465 (2023)

  80. Moura, G.M., Vieira, M.B., Silva, R.L.D.S.D: VEM-SLAM: virtual environment modelling through SLAM. In: Proceedings of the Proceedings - 2020 22nd Symposium on Virtual and Augmented Reality, SVR 2020, pp. 242–251 (2020)

  81. Wang, Q., Wang, Z., Li, B., Wei, D.: An improved YOLOv3 object detection network for mobile augmented reality. In: Proceedings of the International Conference on Virtual Rehabilitation, ICVR, pp. 332–339 (2021)

  82. Elmagrouni, I., Ettaoufik, A., Aouad, S., Maizate, A.: A deep learning framework for hand gesture recognition and multimodal interface control. Rev. Intell. Artif. 37, 881–887 (2023). https://doi.org/10.18280/ria.370407

    Article  Google Scholar 

  83. Haji Mohd, M.N., MohdAsaari, M.S., Lay Ping, O., Rosdi, B.A.: Vision-based hand detection and tracking using fusion of kernelized correlation filter and single-shot detection. Appl. Sci. (2023). https://doi.org/10.3390/app13137433

    Article  Google Scholar 

  84. Zhao, R., Ge, Y., Duan, Y., Jiang, Q.: Large-field gesture tracking and recognition for augmented reality interaction. In: Proceedings of the Journal of Physics: Conference Series (2023)

  85. Krishna, S., Shanthappa Vandrotti, B.: DeepSmooth: efficient and smooth depth completion. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 3358–3367 (2023)

  86. Esser, P., Haux, J., Milbich, T., Ommer, B.: Towards learning a realistic rendering of human behavior. In: Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 409–425 (2019)

  87. Jiang, J., Huang, Z., Qian, W., Zhang, Y., Liu, Y.: Registration technology of augmented reality in oral medicine: a review. IEEE Access 7, 53566–53584 (2019). https://doi.org/10.1109/ACCESS.2019.2912949

    Article  Google Scholar 

  88. Lee, D., Yi, J.W., Hong, J., Chai, Y.J., Kim, H.C., Kong, H.J.: Augmented reality to localize individual organ in surgical procedure. Healthc. Inform. Res. 24, 394–401 (2018). https://doi.org/10.4258/hir.2018.24.4.394

    Article  Google Scholar 

  89. Elhagry, A., El Saddik, A.: Text-to-metaverse: towards a digital twin-enabled multimodal conditional generative metaverse. In: Proceedings of the Proceedings—2023 IEEE International Conference on Metaverse Computing, Networking and Applications, MetaCom 2023, pp. 666–669 (2023)

  90. Jacob, R., Sugitha, N.: A review on vision based real time fingertip detection approaches. Iraqi J. Sci. 64, 4014–4022 (2023). https://doi.org/10.24996/ijs.2023.64.6.39

    Article  Google Scholar 

  91. Rodriguez-Lozano, F.J., Gámez-Granados, J.C., Martínez, H., Palomares, J.M., Olivares, J.: 3D reconstruction system and multiobject local tracking algorithm designed for billiards. Appl. Intell. 53, 21543–21575 (2023). https://doi.org/10.1007/s10489-023-04542-3

    Article  Google Scholar 

  92. Shamsabadi, A., Mojdeganlou, H., Barzegary, A., Fakhfouri, A., Azad, K., Heydari, M., Pashaei, Z., Mehraeen, E.: Opportunities, threats and solution techniques of deep-fake technology: a systematic review. In: Proceedings of the Proceedings of the International Conferences on e-Society 2022 and Mobile Learning 2022, pp. 19–25 (2022)

  93. Taylor, C., Mullany, C., McNicholas, R., Cosker, D.: VR props: an end-to-end pipeline for transporting real objects into virtual and augmented environments. In: Proceedings of the Proceedings—2019 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2019, pp. 83–92 (2019)

  94. Marelli, D., Bianco, S., Ciocca, G.: Designing an AI-Based virtual try-on web application. Sensors (2022). https://doi.org/10.3390/s22103832

    Article  Google Scholar 

  95. Papazoglou Chalikias, A., Kouslis, E., Sarakatsanos, O., Boikou, A., Papadopoulos, S.I., Koutlis, C., Papadopoulos, S., Nikolopoulos, S., Kompatsiaris, I., Gavilan, D. et al.: Novel paradigms of human-fashion interaction. In Proceedings of the ACM International Conference Proceeding Series (2022)

  96. You, Y., Boyer, A., Jokela, T., Piippo, P.: SelfieWall: a mixed reality advertising platform. In: Proceedings of the Adjunct Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2017, pp. 240–244 (2017)

  97. Zhang, B.: Augmented reality virtual glasses try-on technology based on iOS platform. Eurasip J. Image Video Process. (2018). https://doi.org/10.1186/s13640-018-0373-8

    Article  Google Scholar 

  98. Avgerinakis, K., Meditskos, G., Derdaele, J., Mille, S., Shekhawat, Y., Fraguada, L., Lopez, E., Wuyts, J., Tellios, A., Riegas, S. et al.: V4Design for enhancing architecture and video game creation. In: Proceedings of the Adjunct Proceedings—2018 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2018, pp. 305–309 (2018)

  99. Bajaj, A., Rajpal, J., Abraham, A.: A survey on 3D hand detection and tracking algorithms for human computer interfacing. In: Proceedings of the Lecture Notes in Networks and Systems, pp. 384–395 (2023)

  100. Vidya, M., Vineela, S., Sathish, P., Reddy, A.S.: Gesture-based control of presentation slides using OpenCV. In: Proceedings of the Proceedings of the 2023 2nd International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2023, pp. 1786–1791 (2023)

  101. Dash, A., Jena, S.P., Gantayet, A.: Administrator controlled timetable based automatic facial recognition attendance system. In : Proceedings of the 2023 International Conference in Advances in Power, Signal, and Information Technology, APSIT 2023, pp. 663–668 (2023)

  102. Lawal, C.O., Akinrinmade, A.A., Badejo, J.A.: Face-based gender recognition analysis for Nigerians using CNN. In: Proceedings of the Journal of Physics: Conference Series (2019)

  103. Mai, N.T.L., Ahmad Ridzuan, S.S.B., Omar, Z.B.: Content-based image retrieval system for an image gallery search application. Int. J. Electr. Comput. Eng. 8, 1903–1912 (2018). https://doi.org/10.11591/ijece.v8i3.pp1903-1912

    Article  Google Scholar 

  104. Berčík, J., Mravcová, A., Gálová, J., Jadroňová, S.: The use of computer vision and data mining in obtaining subconscious user experience. In: Proceedings of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022 (2022)

  105. Konin, A., Siddiqui, S., Gilani, H., Mudassir, M., Ahmed, M.H., Shaukat, T., Naufil, M., Ahmed, A., Tran, Q.H., Zeeshan Zia, M.: AI-mediated job status tracking in AR as a no-code service. In: Proceedings of the Proceedings - 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct, ISMAR-Adjunct 2022, pp. 915–916 (2022)

  106. Lee, S., Aldas, N.D.T., Lee, C., Rosson, M.B., Carroll, J.M., Narayanan, V.: AIGuide: augmented reality hand guidance in a visual prosthetic. ACM Trans. Access. Comput. (2022). https://doi.org/10.1145/3508501

    Article  Google Scholar 

  107. Bakaev, M., Heil, S., Khvorostov, V., Gaedke, M.: Auto-extraction and integration of metrics for web user interfaces. J. Web Eng. 17, 561–590 (2018). https://doi.org/10.13052/jwe1540-9589.17676

    Article  Google Scholar 

  108. Bakaev, M., Heil, S., Khvorostov, V., Gaedke, M.: HCI vision for automated analysis and mining of web user interfaces. In: Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 136–144 (2018)

  109. Iliev, Y., Ilieva, G.: A framework for smart home system with voice control using NLP methods. Electronics (Switzerland) (2023). https://doi.org/10.3390/electronics12010116

    Article  Google Scholar 

  110. Malcangi, M.: Smart recognition and synthesis of emotional speech for embedded systems with natural user interfaces. In: Proceedings of the Proceedings of the International Joint Conference on Neural Networks, pp. 867–871 (2011)

  111. Sharma, A., Ahmed, V., Sharma, S., Jana, B., Rani, K.: An effective approach to speech-based email assistance for visually impaired people. In: Proceedings of the 2022 8th International Conference on Signal Processing and Communication, ICSC 2022, pp. 32–35 (2022)

  112. Prihodova, K., Hub, M.: Hand-based biometric system using convolutional neural networks. Acta Inform. Prag. 9, 48–57 (2020). https://doi.org/10.18267/j.aip.131

    Article  Google Scholar 

  113. Qazi, F.A.: A survey of biometric authentication systems. In: Proceedings of the Proceedings of the International Conference on Security and Management, SAM'04, pp. 61–67 (2004)

  114. Huang, X., Zhou, Y., Du, Y.: A novel bi-dual inference approach for detecting six-element emotions. Appl. Sci. (2023). https://doi.org/10.3390/app13179957

    Article  Google Scholar 

  115. Kumari, R., Wasim, J.: A deep learning approach for human facial expression recognition using residual network – 101. J. Curr. Sci. Tech. 13, 517–532 (2023). https://doi.org/10.59796/jcst.V13N3.2023.2152

    Article  Google Scholar 

  116. Wang, J.Z., Zhao, S., Wu, C., Adams, R.B., Newman, M.G., Shafir, T., Tsachor, R.: Unlocking the emotional world of visual media: an overview of the science, research, and impact of understanding emotion. Proc. IEEE 111, 1236–1286 (2023). https://doi.org/10.1109/JPROC.2023.3273517

    Article  Google Scholar 

  117. Waelen, R.A.: The ethics of computer vision: an overview in terms of power. AI Eth. (2023). https://doi.org/10.1007/s43681-023-00272-x

    Article  Google Scholar 

  118. Dhirani, L.L., Mukhtiar, N., Chowdhry, B.S., Newe, T.: Ethical dilemmas and privacy issues in emerging technologies: a review. Sensors (2023). https://doi.org/10.3390/s23031151

    Article  Google Scholar 

  119. Mehmood, K., Qiu, X., Abrar, M.M.: Unearthing research trends in emissions and sustainable development: potential implications for future directions. Gondwana Res. Res. 119, 227–245 (2023). https://doi.org/10.1016/j.gr.2023.02.009

    Article  Google Scholar 

  120. Bilal, M., Harasani, W.I., Yang, L.: Rapid prototyping of image contrast enhancement hardware accelerator on FPGAs Using high-level synthesis tools. Jordan. J. Electr. Eng. 9, 322–337 (2023). https://doi.org/10.5455/jjee.204-1673105856

    Article  Google Scholar 

  121. Spasennikov, V., Androsov, K., Golubeva, G.: Ergonomic factors in patenting computer systems for personnel's selection and training. In: Proceedings of the CEUR Workshop Proceedings (2020)

  122. Zhang, J., Chen, D., Liao, J., Zhang, W., Feng, H., Hua, G., Yu, N.: Deep model intellectual property protection via deep watermarking. IEEE Trans. Patt. Anal. Mach. Intell. 44, 4005–4020 (2022). https://doi.org/10.1109/TPAMI.2021.3064850

    Article  Google Scholar 

  123. Bloom, G., Alsulami, B., Nwafor, E., Bertolotti, I.C.: Design patterns for the industrial Internet of Things. In: Proceedings of the IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS, pp. 1–10 (2018)

  124. Wazzan, W.: Updating the law of trade secrets in Saudi Arabia. Indones. J. Intl. Comp. Law 5, 43–73 (2018)

    Google Scholar 

  125. Filicori, F., Addison, P.: Intellectual property and data ownership in the age of video recording in the operating room. Surg. Endosc. 36, 3772–3774 (2022). https://doi.org/10.1007/s00464-021-08692-8

    Article  Google Scholar 

  126. Aristodemou, L., Tietze, F.: The state-of-the-art on Intellectual property analytics (IPA): a literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Patent Inf. 55, 37–51 (2018). https://doi.org/10.1016/j.wpi.2018.07.002

    Article  Google Scholar 

  127. Prihastomo, Y., Kosala, R., Supangkat, S.H., Ranti, B., Trisetyarso, A.: Theoretical framework of smart intellectual property office in developing countries. Proc. Comput. Sci. 161, 994–1001 (2019). https://doi.org/10.1016/j.procs.2019.11.209

    Article  Google Scholar 

  128. Nemlioglu, I.: A comparative analysis of intellectual property rights: a case of developed versus developing countries. Proc. Comput. Sci. 158, 988–998 (2019). https://doi.org/10.1016/j.procs.2019.09.140

    Article  Google Scholar 

  129. Xie, Z., Ouyang, X., Liu, X., Xing, G.: UltraDepth: Exposing high-resolution texture from depth cameras. In: Proceedings of the SenSys 2021—Proceedings of the 2021 19th ACM Conference on Embedded Networked Sensor Systems, pp. 302–315 (2021)

  130. Li, Z., Ma, L., Chen, M., Xiao, J., Gu, Q.: Patch similarity aware data-free quantization for vision transformers. In: Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 154–170 (2022)

  131. Wang, Z., Yang, G., Dai, H., Rong, C.: Privacy-preserving split learning for large-scaled vision pre-training. IEEE Trans. Inf. Forensics Secur. 18, 1539–1553 (2023). https://doi.org/10.1109/TIFS.2023.3243490

    Article  Google Scholar 

  132. Battiston, I.: Improving Data minimization through decentralized data architectures. In: Proceedings of the CEUR Workshop Proceedings, pp. 25–28 (2023)

  133. Miri Rostami, S., Samet, S., Kobti, Z.: A study of blockchain-based federated learning. In: Adaptation, Learning, and Optimization, Volume 27, pp. 139–165, Springer Science and Business Media Deutschland GmbH (2023)

  134. Lai, C., Wang, Y., Wang, H., Zheng, D.: A blockchain-based traceability system with efficient search and query. Peer-to-Peer Netw. Appl. 16, 675–689 (2023). https://doi.org/10.1007/s12083-022-01438-w

    Article  Google Scholar 

  135. Shaikh, T.A., Rasool, T., Verma, P.: Machine intelligence and medical cyber-physical system architectures for smart healthcare: taxonomy, challenges, opportunities, and possible solutions. Artif. Intell. Med.. Intell. Med. (2023). https://doi.org/10.1016/j.artmed.2023.102692

    Article  Google Scholar 

  136. Coelho, K.K., Tristão, E.T., Nogueira, M., Vieira, A.B., Nacif, J.A.M.: Multimodal biometric authentication method by federated learning. Biomed. Signal Process. Control (2023). https://doi.org/10.1016/j.bspc.2023.105022

    Article  Google Scholar 

  137. Liu, F., Liu, H., Kannadasan, R., Jiang, Q.: A biometric-based implicit authentication protocol with privacy protection for ubiquitous communication environments. Int. J. Commun. Syst. (2023). https://doi.org/10.1002/dac.5578

    Article  Google Scholar 

  138. Sharma, S.B., Dhall, I., Nayak, S.R., Chatterjee, P.: Reliable biometric authentication with privacy protection. In: Proceedings of the Lecture Notes in Electrical Engineering, pp. 233–249 (2023)

  139. Herman, S.: Artificial intelligence, machine learning, and computer vision. In: SMART MANUFACTURING: The Lean Six Sigma Way, pp. 205–217, Wiley (2022)

  140. Kasianchuk, A., Honcharenko, Y., Popovych, N., Nechyporuk, R., Nechyporuk, Y.: The future of artificial intelligence, computer vision, and machine learning and its potential to shape the way we live and interact with technology. In: Proceedings of the SIST 2023—2023 IEEE International Conference on Smart Information Systems and Technologies, Proceedings, pp. 72–78 (2023)

  141. Scheuerman, M.K., Weathington, K., Mugunthan, T., Denton, E., Fiesler, C.: From human to data to dataset: mapping the traceability of human subjects in computer vision datasets. Proc. ACM Hum. Comput. Interact. (2023). https://doi.org/10.1145/3579488

    Article  Google Scholar 

  142. Li, X., Yan, L., Zhao, L., Martinez-Maldonado, R., Gasevic, D.: CVPE: a computer vision approach for scalable and privacy-preserving socio-spatial, multimodal learning analytics. In: Proceedings of the ACM International Conference Proceeding Series, pp. 175–185 (2023)

  143. Ly Duc, M., Hlavaty, L., Bilik, P., Martinek, R.: Enhancing manufacturing excellence with Lean Six Sigma and zero defects based on Industry 4.0. Adv. Prod. Eng. Manag. 18, 32–48 (2023). https://doi.org/10.14743/APEM2023.1.455

    Article  Google Scholar 

  144. Yin, Z., Li, Z., Li, H.: Application of internet of things data processing based on machine learning in community sports detection. Prev. Med. (2023). https://doi.org/10.1016/j.ypmed.2023.107603

    Article  Google Scholar 

  145. Gorlin, R.: Perspective on invasive cardiology: the 24th Louis F. Bishop lecture. J. Am. Coll. Cardiol. 23, 525–532 (1994). https://doi.org/10.1016/0735-1097(94)90442-1

    Article  Google Scholar 

  146. Laguette, M.J.N., Suijkerbuijk, M.A.M., September, A.V.: Epigenetic regulation and musculoskeletal injuries. In: Epigenetics of Exercise and Sports: Concepts, Methods, and Current Research, pp. 235–246, Elsevier (2021)

  147. Bricout, J., Baker, P.M.A., Moon, N.W., Sharma, B.: Exploring the smart future of participation: community, inclusivity, and people with disabilities. Intl. J. E Plan. Res. 10, 94–108 (2021). https://doi.org/10.4018/IJEPR.20210401.oa8

    Article  Google Scholar 

  148. Shiggins, C., Coe, D., Gilbert, L., Research Collaboration, A., Mares, K.: Development of an “Aphasia-accessible participant in research experience survey” through co-production. Aphasiology (2022). https://doi.org/10.1080/02687038.2021.1996532

    Article  Google Scholar 

  149. Wang, Q., Zhang, Z., Wang, Y., Jin, H., Sun, Q., Song, Y., Yu, H., Xue, H., Che, C.: Analysis and improvement of repeated wake-up jittering H-line. In: Proceedings of the Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA (2021)

  150. Mefenza, M., Yonga, F., Saldanha, L.B., Bobda, C., Velipassalar, S.: A framework for rapid prototyping of embedded vision applications. In: Proceedings of the Conference on Design and Architectures for Signal and Image Processing, DASIP (2015)

  151. Papachristou, E., Kalaitzi, D., Kaseris, M.: An innovative platform for designing and rapid virtual prototyping of garments: The case of i-mannequin. In: Proceedings of the Lecture Notes in Mechanical Engineering, pp. 354–362 (2024)

  152. Carbone, C.: The kit of parts as medium and message for developing post-war dwellings. Hist. Postwar. Archit. 4, 54–74 (2019). https://doi.org/10.6092/issn.2611-0075/9648

    Article  Google Scholar 

  153. Kovilpillai, J.J.A., Jayanthy, S.: An optimized deep learning approach to detect and classify defective tiles in production line for efficient industrial quality control. Neural Comput. Appl. 35, 11089–11108 (2023). https://doi.org/10.1007/s00521-023-08283-9

    Article  Google Scholar 

  154. Lins, R.G., Santos, R.E., Gaspar, R.: Vision-based measurement for quality control inspection in the context of Industry 4.0: a comprehensive review and design challenges. J. Braz. Soc. Mech. Sci. Eng. (2023). https://doi.org/10.1007/s40430-023-04050-y

    Article  Google Scholar 

  155. Castañé, G., Dolgui, A., Kousi, N., Meyers, B., Thevenin, S., Vyhmeister, E., Östberg, P.O.: The ASSISTANT project: AI for high level decisions in manufacturing. Int. J. Prod. Res. 61, 2288–2306 (2023). https://doi.org/10.1080/00207543.2022.2069525

    Article  Google Scholar 

  156. Guo, Y., Ren, J., Liang, Y., Ding, Y.: Construction of digital twin for clamped near-net-shape blade in adaptive manufacturing. J. Manuf. Processes 108, 12–25 (2023). https://doi.org/10.1016/j.jmapro.2023.10.055

    Article  Google Scholar 

  157. Sonnleithner, L., Hager, A.L., Zoitl, A., Meixner, K.: IEC 61499 skill-based distributed design pattern. In: Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, ETFA (2023)

  158. Saenz de Ugarte, B., Jbaida, K., Artiba, A., Pellerin, R.: Adaptive manufacturing: a real-time simulation-based control system. In: Proceedings of the 2006 International Conference on Software Engineering Advances, ICSEA'06, pp. 71–77 (2006)

  159. Comari, S., Di Leva, R., Carricato, M., Badini, S., Carapia, A., Collepalumbo, G., Gentili, A., Mazzotti, C., Staglianò, K., Rea, D.: Mobile cobots for autonomous raw-material feeding of automatic packaging machines. J. Manuf. Syst. 64, 211–224 (2022). https://doi.org/10.1016/j.jmsy.2022.06.007

    Article  Google Scholar 

  160. Navas-Reascos, G.E., Romero, D., Rodriguez, C.A., Guedea, F., Stahre, J.: Wire harness assembly process supported by a collaborative robot: a case study focus on ergonomics. Robotics (2022). https://doi.org/10.3390/robotics11060131

    Article  Google Scholar 

  161. Sharma, A.: Making electric vehicle batteries safer through better inspection using artificial intelligence and cobots. Int. J. Prod. Res. (2023). https://doi.org/10.1080/00207543.2023.2180308

    Article  Google Scholar 

  162. Gordan, M., Dancea, O., Vlaicu, A., Stoian, I., Tsatos, O.: Computer vision based decision support tool for hydro-dams surface deterioration assessment and visualization using fuzzy sets and pseudo-coloring. In: Proceedings of the 2008 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2008: THETA 16th Edition—Proceedings, pp. 207–212 (2008)

  163. Inselberg, A.: Visualizing high dimensional datasets and multivariate relations alfred inselberg (Tel Aviv university),visualizing high dimensional datasets & multivariate relations. In: Proceedings of the Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining pp. 33–94 (2000)

  164. Ahmed, S., Kalsoom, T., Ramzan, N., Pervez, Z., Azmat, M., Zeb, B., Ur Rehman, M.: Towards supply chain visibility using internet of things: a dyadic analysis review. Sensors (2021). https://doi.org/10.3390/s21124158

    Article  Google Scholar 

  165. Al-Khatib, A.W.: The impact of industrial Internet of things on sustainable performance: the indirect effect of supply chain visibility. Bus. Process Manage. J. 29, 1607–1629 (2023). https://doi.org/10.1108/BPMJ-03-2023-0198

    Article  Google Scholar 

  166. Panigrahi, R.R., Shrivastava, A.K., Qureshi, K.M., Mewada, B.G., Alghamdi, S.Y., Almakayeel, N., Almuflih, A.S., Qureshi, M.R.N.: AI chatbot adoption in SMEs for sustainable manufacturing supply chain performance: a mediational research in an emerging country. Sustainability (2023). https://doi.org/10.3390/su151813743

    Article  Google Scholar 

  167. Hong, T., Kolios, A.: A framework for risk management of large-scale organisation supply chains. In: Proceedings of the 2020 international conference on decision aid sciences and application, DASA 2020, pp. 948–953 (2020)

  168. Raju, K., Ravichandran, S., Khadri, S.P.M.S. Blockchain for on-demand small launch vehicle supply chain. In: Proceedings of the Proceedings of the International Astronautical Congress, IAC (2018)

  169. Yao, Y., Saccomandi, P., Tarabini, M.: User-driven design and monitoring systems of limb prostheses: overview on the technology and on the gender-related aspects. In: Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021—Proceedings, pp. 313–318 (2021)

  170. Becue, A., Fourastier, Y., Praca, I., Savarit, A., Baron, C., Gradussofs, B., Pouille, E., Thomas, C.: CyberFactory#1: securing the industry 4.0 with cyber-ranges and digital twins. In: Proceedings of the IEEE International Workshop on Factory Communication Systems—Proceedings, WFCS, pp. 1–4 (2018)

  171. Terzimehic, T., Wenger, M., Zoitl, A., Bayha, A., Becker, K., Müller, T., Schauerte, H.: Towards an industry 4.0 compliant control software architecture Using IEC 61499 & OPC UA. In: Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, pp. 1–4 (2017)

  172. Villalba-Diez, J., Schmidt, D., Gevers, R., Ordieres-Meré, J., Buchwitz, M., Wellbrock, W.: Deep learning for industrial computer vision quality control in the printing industry 4.0. Sensors (2019). https://doi.org/10.3390/s19183987

    Article  Google Scholar 

  173. Nagy, M., Lăzăroiu, G.: Computer vision algorithms, remote sensing data fusion techniques, and mapping and navigation tools in the industry 4.0-based Slovak automotive sector. Mathematics (2022). https://doi.org/10.3390/math10193543

    Article  Google Scholar 

  174. Penumuru, D.P., Muthuswamy, S., Karumbu, P.: Identification and classification of materials using machine vision and machine learning in the context of industry 4.0. J. Intell. Manuf.Intell. Manuf. 31, 1229–1241 (2020). https://doi.org/10.1007/s10845-019-01508-6

    Article  Google Scholar 

  175. Pransky, J.: The Pransky interview: Mitchell Weiss, CTO, seegrid corporation. Ind. Robot. 44, 137–141 (2017). https://doi.org/10.1108/IR-01-2017-0012

    Article  Google Scholar 

  176. Laucka, A., Adaskeviciute, V., Valinevicius, A., Andriukaitis, D.: Research of the equipment calibration methods for fertilizers particles distribution by size using image processing measurement method. In: Proceedings of the 2018 23rd International Conference on Methods and Models in Automation and Robotics, MMAR 2018, pp. 407–412 (2018)

  177. Benbarrad, T., Salhaoui, M., Kenitar, S.B., Arioua, M.: Intelligent machine vision model for defective product inspection based on machine learning. J. Sens. Actuator Netw. 10, 7 (2021)

    Article  Google Scholar 

  178. Güldenring, R., van Evert, F.K., Nalpantidis, L.: RumexWeeds: a grassland dataset for agricultural robotics. J. Field. Rob. 40, 1639–1656 (2023). https://doi.org/10.1002/rob.22196

    Article  Google Scholar 

  179. Kim, D., Choi, M., Um, J.: Digital twin for autonomous collaborative robot by using synthetic data and reinforcement learning. Rob. Comput. Integr. Manuf. (2024). https://doi.org/10.1016/j.rcim.2023.102632

    Article  Google Scholar 

  180. Anjum, M.U., Khan, U.S., Qureshi, W.S., Hamza, A., Khan, W.A.: Vision-based hybrid detection for pick and place application in robotic manipulators. In: Proceedings of the 2023 International Conference on Robotics and Automation in Industry, ICRAI 2023 (2023)

  181. Mustafin, M., Chebotareva, E., Li, H., Martínez-García, E.A., Magid, E.: Features of interaction between a human and a gestures-controlled collaborative robot in an assembly task: pilot experiments. In: Proceedings of the Proceedings of International Conference on Artificial Life and Robotics, pp. 158–162 (2023)

  182. Maitre, J., Rendu, C., Bouchard, K., Bouchard, B., Gaboury, S.: Object recognition in performed basic daily activities with a handcrafted data glove prototype. Pattern Recogn. Lett. 147, 181–188 (2021). https://doi.org/10.1016/j.patrec.2021.04.017

    Article  Google Scholar 

  183. Zhao, G., Ma, H., Jin, Y.: A Method for robust object recognition and pose estimation of rigid body based on point cloud. In: Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 468–480 (2022)

  184. Lindner, T., Wyrwał, D., Milecki, A.: An autonomous humanoid robot designed to assist a human with a gesture recognition system. Electronics 12, 2652 (2023)

    Article  Google Scholar 

  185. Choksi, S., Szot, S., Zang, C., Yarali, K., Cao, Y., Ahmad, F., Xiang, Z., Bitner, D.P., Kostic, Z., Filicori, F.: Bringing Artificial Intelligence to the operating room: edge computing for real-time surgical phase recognition. Surg. Endosc. 37, 8778–8784 (2023). https://doi.org/10.1007/s00464-023-10322-4

    Article  Google Scholar 

  186. Li, C., Chen, H.: Cultural psychology of english translation through computer vision-based robotic interpretation. Learn. Motiv.Motiv. (2023). https://doi.org/10.1016/j.lmot.2023.101938

    Article  Google Scholar 

  187. Lu, J., Gong, P., Ye, J., Zhang, J., Zhang, C.: A survey on machine learning from few samples. Patt. Recogn. (2023). https://doi.org/10.1016/j.patcog.2023.109480

    Article  Google Scholar 

  188. Furman, J.L., Teodoridis, F.: Automation, research technology, and researchers’ trajectories: evidence from computer science and electrical engineering. Organ. Sci. 31, 330–354 (2020). https://doi.org/10.1287/orsc.2019.1308

    Article  Google Scholar 

  189. Paneru, S., Jeelani, I.: Computer vision applications in construction: current state, opportunities & challenges. Autom. Constr. 132, 103940 (2021). https://doi.org/10.1016/j.autcon.2021.103940

    Article  Google Scholar 

  190. Jiang, W., Kumar, V., Mehta, N., Bott, J., Modi, V.: Irrigation detection by car: computer vision and sensing for the detection and geolocation of irrigated and non-irrigated farmland. In: Proceedings of the 2020 IEEE Global Humanitarian Technology Conference, GHTC 2020 (2020)

  191. Placidi, G., De Gasperis, G., Mignosi, F., Polsinelli, M., Spezialetti, M.: Integration of a BCI with a hand tracking system and a motorized robotic arm to improve decoding of brain signals related to hand and finger movements. In: Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 305–315 (2021)

  192. Wong, A., Famuori, M., Shafiee, M.J., Li, F., Chwyl, B., Chung, J.: YOLO nano: a highly compact you only look once convolutional neural network for object detection. In: Proceedings of the Proceedings—5th Workshop on Energy Efficient Machine Learning and Cognitive Computing, EMC2-NIPS 2019, pp. 22–25 (2019)

  193. Huang, R., Huang, Z., Su, S.: A Faster, lighter and stronger deep learning-based approach for place recognition. In: Proceedings of the Communications in Computer and Information Science, pp. 453–463 (2023)

  194. Zhang, Y.: Application of wireless sensor network integrated with 3–5g Technology in the design of interactive space in an urban landscape. Endor. Trans. Scalable. Inf. Syst. 10, 1–12 (2023). https://doi.org/10.4108/eetsis.v10i3.3063

    Article  Google Scholar 

  195. Musharaf Hussain, M.M., Rahman, M.M., Uddin, M.S., Arefin, M.S.: IoT based smart human traffic monitoring system using raspberry Pi. In: Proceedings of the Lecture Notes in Networks and Systems, pp. 361–372 (2023)

  196. Thanki, R., Joshi, P.: Advanced Technologies for Industrial Applications, pp. 1–98. Springer International Publishing (2023)

    Google Scholar 

  197. Deshpande, S., Padalkar, S., Anand, S.: IIoT based framework for data communication and prediction using augmented reality for legacy machine artifacts. Manuf. Let. 35, 1043–1051 (2023). https://doi.org/10.1016/j.mfglet.2023.08.058

    Article  Google Scholar 

  198. Hashmi, M.F., Keskar, A.G.: Machine Learning and Deep Learning for Smart Agriculture and Applications, pp. 1–257. IGI Global (2023)

    Book  Google Scholar 

  199. Klinaku, V., Qatipi, A., Turku, D., Zhubi, L.: Design for mobile view website using model view controller. In: Designing and Developing Innovative Mobile Applications, pp. 267–281, IGI Global (2023)

  200. Naderi, H., Shojaei, A., Ly, R.: Autonomous construction safety incentive mechanism using blockchain-enabled tokens and vision-based techniques. Autom. Constr. Constr (2023). https://doi.org/10.1016/j.autcon.2023.104959

    Article  Google Scholar 

  201. Ramalingam, M., Selvi, G.C., Victor, N., Chengoden, R., Bhattacharya, S., Maddikunta, P.K.R., Lee, D., Piran, M.J., Khare, N., Yenduri, G., et al.: A comprehensive analysis of blockchain applications for securing computer vision systems. IEEE Access 11, 107309–107330 (2023). https://doi.org/10.1109/ACCESS.2023.3319089

    Article  Google Scholar 

  202. Kapoor, V., Naik, P.: Augmented reality-enabled education for middle schools. SN Comput. Sci. (2020). https://doi.org/10.1007/s42979-020-00155-6

    Article  Google Scholar 

  203. Wei, G., Piyan, L., Hai, Z., Zhan, M.: The research and application of image recognition based on improved BP algorithm. In: Proceedings of the Proceedings—3rd International Conference on Intelligent Networks and Intelligent Systems, ICINIS 2010, pp. 80–83 (2010)

  204. Giro, R., Hsu, H., Kishimoto, A., Hama, T., Neumann, R.F., Luan, B., Takeda, S., Hamada, L., Steiner, M.B.: AI powered, automated discovery of polymer membranes for carbon capture. npj Comput. Mater. (2023). https://doi.org/10.1038/s41524-023-01088-3

    Article  Google Scholar 

  205. Van Bossuyt, D.L., Hale, B., Arlitt, R., Papakonstantinou, N.: Zero-trust for the system design lifecycle. J. Comput. Inf. Sci. Eng.Comput. Inf. Sci. Eng. (2023). https://doi.org/10.1115/1.4062597

    Article  Google Scholar 

  206. Yazici, S.: A machine-learning model driven by geometry, material and structural performance data in architectural design process. In: Proceedings of the Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe, pp. 411–418 (2020)

  207. Alimuzzaman, S.M., Jahan, M.P.: Composite based additive manufacturing. In: Materials Horizons: From Nature to Nanomaterials, Volume Part F1488, pp. 117–151, Springer Nature (2024)

  208. Narsimhachary, D., Kalyan Phani, M.: Additive manufacturing: environmental impact, and future perspective. In: Materials Horizons: From Nature to Nanomaterials, Volume Part F1488, pp. 295–308, Springer Nature (2024)

  209. Vanali, M., Pavoni, S., Lanthaler, A.H., Vescovi, D.: Improving dynamic characteristics of strain gauge load cells using additive manufacturing. In: Proceedings of the Conference Proceedings of the Society for Experimental Mechanics Series, pp. 163–172 (2024)

  210. Kokhanov, A., Prokopovich, I., Sikach, T., Dyadyura, I., Karabegovich, I.: Standardization of scanning protocols and measurements for additive manufacturing quality assurance. In: Proceedings of the Lecture Notes in Mechanical Engineering, pp. 359–368 (2024)

  211. Park, M., Venter, M.P., Plessis, A.D.: A lattice structure coupon sample for build quality control in metal additive manufacturing. Mater. Des. (2023). https://doi.org/10.1016/j.matdes.2023.112436

    Article  Google Scholar 

  212. Yang, Y., Kan, C.: Recurrence network-based 3D geometry representation learning for quality control in additive manufacturing of metamaterials. J. Manuf. Sci. Eng. (2023). https://doi.org/10.1115/1.4063236

    Article  Google Scholar 

  213. Barrett, T., Chen, Q., Zhang, A.: Skin deep: Investigating subjectivity in skin tone annotations for computer vision benchmark datasets. In: Proceedings of the ACM International Conference Proceeding Series, pp. 1757–1771 (2023)

  214. Liu, X., Nicolau, J.L., Law, R., Li, C.: Applying image recognition techniques to visual information mining in hospitality and tourism. Int. J. Contemp. Hosp. Manage. 35, 2005–2016 (2023). https://doi.org/10.1108/IJCHM-03-2022-0362

    Article  Google Scholar 

  215. Yang, X., Jia, X., Gong, D., Yan, D.M., Li, Z., Liu, W.: LARNeXt: End-to-end lie algebra residual network for face recognition. IEEE Trans. Patt. Anal. Mach. Intell. 45, 11961–11976 (2023). https://doi.org/10.1109/TPAMI.2023.3279378

    Article  Google Scholar 

  216. Aikyn, N., Zhanegizov, A., Aidarov, T., Bui, D.M., Tu, N.A.: Efficient facial expression recognition framework based on edge computing. J. Supercomput. (2023). https://doi.org/10.1007/s11227-023-05548-x

    Article  Google Scholar 

  217. Xue, P., Wang, C., Huang, W., Jiang, G., Zhou, G., Raza, M.: Pupil centre’s localization with transformer without real pupil. Multimed. Tools Appl 82, 25467–25484 (2023). https://doi.org/10.1007/s11042-023-14403-3

    Article  Google Scholar 

  218. Jaiswal, D., Kumar, P.: A survey on parallel computing for traditional computer vision. Concurr. Comput. Pract. Exper. (2022). https://doi.org/10.1002/cpe.6638

    Article  Google Scholar 

  219. Koubaa, A., Ammar, A., Alahdab, M., Kanhouch, A., Azar, A.T.: Deepbrain: experimental evaluation of cloud-based computation offloadingand edge computing in the internet-of-drones for deep learning applications. Sensors (Switzerland) 20, 1–25 (2020). https://doi.org/10.3390/s20185240

    Article  Google Scholar 

  220. Li, C., Zhang, C., Shi, L., Zheng, R., Shen, Q.: Hard disk posture recognition and grasping based on depth vision. In Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 539–550 (2023)

  221. Prasad, A.O., Mishra, P., Jain, U., Pandey, A., Sinha, A., Yadav, A.S., Kumar, R., Sharma, A., Kumar, G., Hazim Salem, K., et al.: Design and development of software stack of an autonomous vehicle using robot operating system. Rob. Autom. Syst. (2023). https://doi.org/10.1016/j.robot.2022.104340

    Article  Google Scholar 

  222. Wang, G., Wu, X., Xin, B., Gu, X., Wang, G., Zhang, Y., Zhao, J., Cheng, X., Chen, C., Ma, J.: Machine learning in unmanned systems for chemical synthesis. Molecules (2023). https://doi.org/10.3390/molecules28052232

    Article  Google Scholar 

  223. Ferreira, L., Malkowsky, S., Persson, P., Karlsson, S., Åström, K., Liu, L.: Design of an application-specific VLIW vector processor for ORB feature extraction. J. Signal Process Syst. 95, 863–875 (2023). https://doi.org/10.1007/s11265-022-01833-9

    Article  Google Scholar 

  224. Shen, H., Petrossian, A., Vizcarra, J.A., Schiorring, E., Tufenkjian, M.: Robotics-empowered convergence engineering education. In: Proceedings of the ASEE Annual Conference and Exposition, Conference Proceedings (2023)

  225. Benbarrad, T., Salhaoui, M., Kenitar, S.B., Arioua, M.: Intelligent machine vision model for defective product inspection based on machine learning. J. Sens. Actuator Netw.Netw. (2021). https://doi.org/10.3390/jsan10010007

    Article  Google Scholar 

  226. Wang, J., Fu, P., Gao, R.X.: Machine vision intelligence for product defect inspection based on deep learning and Hough transform. J. Manuf. Syst. 51, 52–60 (2019). https://doi.org/10.1016/j.jmsy.2019.03.002

    Article  Google Scholar 

  227. Bi, Z.M., Luo, C., Miao, Z., Zhang, B., Zhang, W.J., Wang, L.: Safety assurance mechanisms of collaborative robotic systems in manufacturing. Rob. Comput. Integr. Manuf. 67, 102022 (2021). https://doi.org/10.1016/j.rcim.2020.102022

    Article  Google Scholar 

  228. García-Esteban, J.A., Piardi, L., Leitão, P., Curto, B., Moreno, V.: An interaction strategy for safe human co-working with industrial collaborative robots. In: Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), pp. 585–590, 10–12 May 2021 (2021)

  229. Medina, A.C., Mora, J.F., Martinez, C., Barrero, N., Hernandez, W.: Safety protocol for collaborative human-robot recycling tasks. IFAC-PapersOnLine 52, 2008–2013 (2019). https://doi.org/10.1016/j.ifacol.2019.11.498

    Article  Google Scholar 

  230. Sardar, P., Abbott, J.D., Kundu, A., Aronow, H.D., Granada, J.F., Giri, J.: Impact of artificial intelligence on interventional cardiology. JACC Cardiovasc. Interv.Cardiovasc. Interv. 12, 1293–1303 (2019). https://doi.org/10.1016/j.jcin.2019.04.048

    Article  Google Scholar 

  231. Pajer, S., Streit, M., Torsney-Weir, T., Spechtenhauser, F., Möller, T., Piringer, H.: WeightLifter: visual weight space exploration for multi-criteria decision making. IEEE Trans. Visual Comput. Graph. 23, 611–620 (2017). https://doi.org/10.1109/TVCG.2016.2598589

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Institutional review board statement

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Kumar, R., Kaur, R. et al. Exploring the role of computer vision in product design and development: a comprehensive review. Int J Interact Des Manuf 18, 3633–3680 (2024). https://doi.org/10.1007/s12008-024-01765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-024-01765-7

Keywords

Navigation