Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Measuring and investigating strategic knowledge about drawing to solve geometry modelling problems

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

We report on the construction, validation, and implementation of an instrument for measuring students’ strategic knowledge about drawing for geometry modelling problems, namely, the strategic knowledge about drawing scale. We conducted a qualitative study and a quantitative study to validate the proposed construction and interpretation of the scale and to obtain initial findings on students’ strategic knowledge about drawing. Results showed that ninth-grade students in the intermediate achievement track had less elaborated strategic knowledge about drawing than their peers in the high achievement track. Further, strategic knowledge about drawing was found to be related to drawing accuracy and modelling performance even when cognitive abilities and interest were controlled for. The current study suggests that promoting strategic knowledge about drawing might be a means to increase drawing and modelling performance—especially among non-high-achieving students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood.

    Chapter  Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects. State, trends, and issues in mathematics instruction. Educational Studies in Mathematics,22(1), 37–68.

    Article  Google Scholar 

  • Bond, T., & Fox, C. M. (2015). Applying the Rasch model. Fundamental measurement in the human sciences. New York, London: Routledge.

    Book  Google Scholar 

  • Borkowski, J. G., Chan, L. K., & Muthukrishna, N. (2000). A process-oriented model of metacognition: Links between motivation and executive functioning. In G. Schraw & J. C. Impara (Eds.), Issues in the measurement of metacognition (pp. 1–41). Lincoln: University of Nebraska Press.

    Google Scholar 

  • Borkowski, J. G., Milstead, M., & Hale, C. (1988). Components of children’s metamemory: Implications for strategy generalization. In F. E. Weinert & M. Perlmutter (Eds.), Memory development: Universal changes and individual differences (pp. 73–100). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Brown, A. L. (1987). Metacognition, executive control, self-regulation, and other mysterious mechanisms. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, motivation, and understanding (pp. 65–116). Hillsdale: Erlbaum.

    Google Scholar 

  • Bürgermeister, A. (2014). Leistungsbeurteilung im Mathematikunterricht: Bedingungen und Effekte von Beurteilungspraxis und Beurteilungsgenauigkeit [Classroom assessment practices: Conditions and consequences of assessment practices and judgment accuracy]. Münster: Waxmann.

    Google Scholar 

  • Csíkos, C., Szitányi, J., & Kelemen, R. (2012). The effects of using drawings in developing young children’s mathematical word problem solving: A design experiment with third-grade Hungarian students. Educational Studies in Mathematics,81(1), 47–65.

    Article  Google Scholar 

  • De Bock, D., Verschaffel, L., & Janssens, D. (1998). The predominance of the linear model in secondary school students’ solutions of word problems involving length and area of similar plane figures. Educational Studies in Mathematics,35(1), 65–83.

    Article  Google Scholar 

  • De Bock, D., Verschaffel, L., Janssens, D., Van Dooren, W., & Claes, K. (2003). Do realistic contexts and graphical representations always have a beneficial impact on students’ performance? Negative evidence from a study on modeling non-linear geometry problems. Learning and Instruction,13(4), 441–463.

    Article  Google Scholar 

  • diSessa, A. A. (2002). Students’ criteria for representational adequacy. In K. P. Gravemeijer, R. Lehrer, H. J. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 105–129). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologist,34, 906–911.

    Article  Google Scholar 

  • Galbraith, P. L., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM The International Journal on Mathematics Education,38(2), 143–162.

    Article  Google Scholar 

  • Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology,91(4), 684.

    Article  Google Scholar 

  • Heller, K. A., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4. bis 12. Klassen, Revision: KFT 4-12+R [Cognitive abilities test for grade 4 to 12]. Göttingen: Hogrefe Testzentrale.

  • Hembree, R. (1992). Experiments and relational studies in problem solving: A meta-analysis. Journal for Research in Mathematics Education,23(3), 242–273.

    Article  Google Scholar 

  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science,11(1), 65–99.

    Article  Google Scholar 

  • Lingel, K., Neuenhaus, N., Artelt, C., & Schneider, W. (2014). Der Einfluss des metakognitiven Wissens auf die Entwicklung der Mathematikleistung am Beginn der Sekundarstufe I [The influence of metacognitive knowledge on the development of mathematics achievement at the beginning of secondary school]. Journal für Mathematik-Didaktik,35(1), 49–77.

    Article  Google Scholar 

  • Lucangeli, D., & Cornoldi, C. (1997). Mathematics and metacognition: What is the nature of the relationship? Mathematical Cognition,3, 121–139.

    Article  Google Scholar 

  • Maaß, K. (2010). Classification scheme for modelling tasks. Journal für Mathematik-Didaktik,31(2), 285–311.

    Article  Google Scholar 

  • Mayring, P. (2015). Qualitative content analysis: theoretical background and procedures. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 365–380). New York: Springer.

    Google Scholar 

  • Neuenhaus, N., Artelt, C., Lingel, K., & Schneider, W. (2011). Fifth graders metacognitive knowledge: General or domain-specific? European Journal of Psychology of Education,26(2), 163–178.

    Article  Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 1–32). New York: Springer.

    Google Scholar 

  • Patton, M. Q. (2015). Qualitative research & evaluation methods. Integrating theory and practice (4th ed.). Los Angeles: Sage.

    Google Scholar 

  • Pressley, M. (1986). The relevance of the good strategy user model to the teaching of mathematics. Educational Psychologist,21(1–2), 139–161.

    Article  Google Scholar 

  • Rellensmann, J. (2019). Selbst erstellte Skizzen beim mathematischen Modellieren. Ergebnisse einer empirischen Untersuchung [Self-generated drawings for modelling problems. Results of an empirical study]. Wiesbaden: Springer.

    Google Scholar 

  • Rellensmann, J., Schukajlow, S., & Leopold, C. (2017). Make a drawing. Effects of strategic knowledge, drawing accuracy, and type of drawing on students’ mathematical modelling performance. Educational Studies in Mathematics,95(1), 53–78.

    Article  Google Scholar 

  • Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM The International Journal on Mathematics Education,42(2), 149–161.

    Article  Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and inference in learning from multiple representations. Learning and Instruction,13, 141–156.

    Article  Google Scholar 

  • Schukajlow, S. (2011). Mathematisches Modellieren. Schwierigkeiten und Strategien von Lernenden als Bausteine einer lernprozessorientierten Didaktik der neuen Aufgabenkultur [Mathematical modelling. Difficulties and strategies of learners as a means for a learning process-oriented didactic of problem posing]. Münster: Waxmann.

  • Schukajlow, S., Achmetli, K., & Rakoczy, K. (2019). Does constructing multiple solutions for real-world problems affect self-efficacy? Educational Studies in Mathematics,100, 42–60.

    Article  Google Scholar 

  • Schukajlow, S., Kolter, J., & Blum, W. (2015). Scaffolding mathematical modelling with a solution plan. ZDM Mathematics Education,47(7), 1241–1254.

    Article  Google Scholar 

  • Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics,79(2), 215–237.

    Article  Google Scholar 

  • Statistisches Bundesamt (2018). Bildung und Kultur. Allgemeinbildende Schulen. [Education and Culture. General education schools]. Wiesbaden: Bundesamt.

  • Stylianou, D. A. (2011). An examination of middle school students’ representation practices in mathematical problem solving through the lens of expert work: Towards an organizing scheme. Educational Studies in Mathematics,76(3), 265–280.

    Article  Google Scholar 

  • Uesaka, Y., Manalo, E., & Ichikawa, S. (2010). The effects of perception of efficacy and diagram construction skills on students’ spontaneous use of diagrams when solving math word problems. In A. K. Goel, M. Jamnik, & N. H. Narayanan (Eds.), Diagrammatic representation and inference (Vol. 6170, pp. 197–211). Berlin: Springer.

    Chapter  Google Scholar 

  • Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review,17(4), 285–325.

    Article  Google Scholar 

  • Van Meter, P., Zecevic, M., Schwartz, A. I., & Garner, J. (2006). Toward a theory of learner-generated drawings: The generative theory of drawing construction. Contemporary Educational Psychology,31(2), 142–166.

    Article  Google Scholar 

  • Verschaffel, L., & De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school: A teaching experiment with fifth graders. Journal for Research in Mathematics Education,28(5), 577–601.

    Article  Google Scholar 

  • Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse: Swets and Zeitlinger.

    Google Scholar 

  • Vorhölter, K. (2018). Conceptualization and measuring of metacognitive modelling competencies: Empirical verification of theoretical assumptions. ZDM,50(1), 343–354.

    Article  Google Scholar 

Download references

Acknowledgements

The present studies were conducted as part of the project Visualization while solving modelling problems, which has been funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, SCHU 2629/3-1 and LE 2585/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Rellensmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rellensmann, J., Schukajlow, S. & Leopold, C. Measuring and investigating strategic knowledge about drawing to solve geometry modelling problems. ZDM Mathematics Education 52, 97–110 (2020). https://doi.org/10.1007/s11858-019-01085-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-019-01085-1

Keywords

Mathematics Subject Classification