Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode–skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode–skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Yoo, L. Yan, S. Lee, H. Kim, and H.-J. Yoo, IEEE Trans. Inf. Technol. Biomed. 13, 897 (2009).

    Article  Google Scholar 

  2. F. Martinez-Tabares, G. Cardona-Cuervo, and G. Castellanos-Dominguez, XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (Springer, Seville, 2014), p. 955.

  3. A. Gruetzmann, S. Hansen, and J. Müller, Physiol. Meas. 28, 1375 (2007).

    Article  Google Scholar 

  4. Y.M. Chi, T.-P. Jung, and G. Cauwenberghs, IEEE Rev. Biomed. Eng. 3, 106 (2010).

    Article  Google Scholar 

  5. R. Cochran and T. Rosen, South. Med. J. 73, 1667 (1980).

    Article  Google Scholar 

  6. R.J. Coskey, Arch. Dermatol. 113, 839 (1977).

    Article  Google Scholar 

  7. W. Uter and H. Schwanitz, Contact Dermatitis 34, 230 (1996).

    Article  Google Scholar 

  8. N. Meziane, J. Webster, M. Attari, and A. Nimunkar, Physiol. Meas. 34, R47 (2013).

    Article  Google Scholar 

  9. M.K. Kwak, H.E. Jeong, and K.Y. Suh, Adv. Mater. 23, 3949 (2011).

    Article  Google Scholar 

  10. S. Yao and Y. Zhu, Adv. Mater. 27, 1480 (2015).

    Article  Google Scholar 

  11. R. Vecht, M.A. Gatzoulis, and N. Peters, ECG Diagnosis in Clinical Practiceed (London: Springer, 2009), p. 1.

    Book  Google Scholar 

  12. G.D. Clifford, F. Azuaje, and P. McSharry, Advanced Methods and Tools for ECG Data Analysis, 1st ed. (Norwood: Artech House Inc., 2006), p. 11.

    Google Scholar 

  13. J. Webster, Medical Instrumentation: Application and Design, 4th ed. (Hoboken: Wiley, 2009), p. 205.

    Google Scholar 

  14. P. Griss, H.K. Tolvanen-Laakso, P. Merilainen, and G. Stemme, IEEE Trans. Biomed. Eng. 49, 597 (2002).

    Article  Google Scholar 

  15. L.-D. Liao, I.-J. Wang, S.-F. Chen, J.-Y. Chang, and C.-T. Lin, Sensors 11, 5819 (2011).

    Article  Google Scholar 

  16. A. Cömert, M. Honkala, and J. Hyttinen, BioMed. Eng. OnLine 12, 26 (2013).

    Article  Google Scholar 

  17. A.C. Myers, H. Huang, and Y. Zhu, RSC Adv. 5, 11627 (2015).

    Article  Google Scholar 

  18. M. Yokus and J. Jur, IEEE Trans. Biomed. Eng. 63, 423 (2016).

    Article  Google Scholar 

  19. E. Clar, C. Her, and C. Sturelle, J. Soc. Cosmet. Chem. 26, 337 (1975).

    Google Scholar 

  20. X. Huang, H. Cheng, K. Chen, Y. Zhang, Y. Zhang, Y. Liu, C. Zhu, S.-C. Ouyang, G.-W. Kong, and C. Yu, IEEE Trans. Biomed. Eng. 60, 2848 (2013).

    Article  Google Scholar 

  21. L. Geddes and M. Valentinuzzi, Ann. Biomed. Eng. 1, 356 (1973).

    Article  Google Scholar 

  22. A. Searle and L. Kirkup, Physiol. Meas. 21, 271 (2000).

    Article  Google Scholar 

  23. P. Salvo, R. Raedt, E. Carrette, D. Schaubroeck, J. Vanfleteren, and L. Cardon, Sens. Actuat. A 174, 96 (2012).

    Article  Google Scholar 

  24. J.-H. Moon, D.H. Baek, Y.Y. Choi, K.H. Lee, H.C. Kim, and S.-H. Lee, J. Micromech. Microeng. 20, 025032 (2010).

    Article  Google Scholar 

  25. Y. Meng, Z.B. Li, X. Chen, and J.P. Chen, Microsyst. Technol. 21, 1241 (2015).

    Article  Google Scholar 

  26. Y. Meng, Z. Li, and J. Chen, Microsyst. Technol. (2015). doi:10.1007/s00542-015-2490-y.

    Google Scholar 

  27. J.-Y. Baek, J.-H. An, J.-M. Choi, K.-S. Park, and S.-H. Lee, Sens. Actuat. A 143, 423 (2008).

    Article  Google Scholar 

  28. Y.-H. Chen, M.O. de Beeck, L. Vanderheyden, E. Carrette, V. Mihajlović, K. Vanstreels, B. Grundlehner, S. Gadeyne, P. Boon, and C. Van Hoof, Sensors 14, 23758 (2014).

    Article  Google Scholar 

  29. B. Reyes, H.F. Posada-Quintero, J.R. Bales, A.L. Clement, G.D. Pins, A. Swiston, J. Riistama, J.P. Florian, B. Shykoff, and M. Qin, IEEE Trans. Biomed. Eng. 61, 1863 (2014).

    Google Scholar 

  30. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, and A. Islam, Science 333, 838 (2011).

    Article  Google Scholar 

  31. L. Beckmann, C. Neuhaus, G. Medrano, N. Jungbecker, M. Walter, T. Gries, and S. Leonhardt, Physiol. Meas. 31, 233 (2010).

    Article  Google Scholar 

  32. P. Xu, H. Zhang, and X. Tao, Text. Prog. 40, 183 (2008).

    Article  Google Scholar 

  33. S.M. Lobodzinski and M.M. Laks, J. Electrocardiol. 39, S41 (2006).

    Article  Google Scholar 

  34. G. Paul, R. Torah, S. Beeby, and J. Tudor, Sens. Actuat. A 206, 35 (2014).

    Article  Google Scholar 

  35. T.-H. Kang, C.R. Merritt, E. Grant, B. Pourdeyhimi, and H.T. Nagle, IEEE Trans. Biomed. Eng. 55, 188 (2008).

    Article  Google Scholar 

  36. R. Paradiso, G. Loriga, and N. Taccini, IEEE Trans. Inf. Technol. Biomed. 9, 337 (2005).

    Article  Google Scholar 

  37. V. Marozas, A. Petrenas, S. Daukantas, and A. Lukosevicius, J. Electrocardiol. 44, 189 (2011).

    Article  Google Scholar 

  38. P. Rai, P.S. Kumar, S. Oh, H. Kwon, G.N. Mathur, V.K. Varadan, and M. Agarwal, SPIE Proceedings (International Society for Optics and Photonics, Bellingham, 2012), p. 83440E.

  39. L.-S. Hsu, S.-W. Tung, C.-H. Kuo, and Y.-J. Yang, Sensors 14, 12370 (2014).

    Article  Google Scholar 

  40. P. Griss, P. Enoksson, H.K. Tolvanen-Laakso, P. Meriläinen, S. Ollmar, and G. Stemme, J. Microelectromech. Syst. 10, 10 (2001).

    Article  Google Scholar 

  41. D. Guo, F.E. Tay, L. Yu, L. Xu, M. Nyan, F. Chong, K. Yap, and B. Xu, 2008 5th International Summer School and Symposium on Medical Devices and Biosensors, ISSS-MDBS (IEEE, Hong Kong, 2008), p. 41.

  42. L. Yu, F. Tay, D. Guo, L. Xu, and K. Yap, Sens. Actuat. A 151, 17 (2009).

    Article  Google Scholar 

  43. J.W. Jeong, M.K. Kim, H. Cheng, W.H. Yeo, X. Huang, Y. Liu, Y. Zhang, Y. Huang, and J.A. Rogers, Adv. Healthc. Mater. 3, 642 (2014).

    Article  Google Scholar 

  44. Y.K. Lim, K.K. Kim, and K.S. Park, 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’04 (IEEE, San Francisco, 2004), p. 2383.

  45. Y.G. Lim, K.K. Kim, and K.S. Park, IEEE Trans. Biomed. Eng. 54, 718 (2007).

    Article  Google Scholar 

  46. H.J. Baek, H.B. Lee, J.S. Kim, J.M. Choi, K.K. Kim, and K.S. Park, Telemed. J. E Health 15, 182 (2009).

    Article  Google Scholar 

  47. B. Chamadiya, K. Mankodiya, M. Wagner, R.B. Nasreddine, and U.G. Hofmann, 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (IEEE, Dublin, 2011), p. 101.

  48. S.M. Lee, K.S. Sim, K.K. Kim, Y.G. Lim, and K.S. Park, Med. Biol. Eng. Comput. 48, 447 (2010).

    Article  Google Scholar 

  49. J.M. Lee, F. Pearce, A.D. Hibbs, R. Matthews, and C. Morrissette, Evaluation of a capacitively-coupled, non-contact (through clothing) electrode or ECG monitoring and life signs detection for the objective force warfighter (DTIC Document, 2004).

  50. G. Ruffini, S. Dunne, E. Farrés, J. Marco-Pallarés, C. Ray, E. Mendoza, R. Silva, and C. Grau, Sens. Actuat. A 132, 34 (2006).

    Article  Google Scholar 

  51. J.G. Webster, IEEE Trans. Biomed. Eng. BME-31, 823 (1984).

  52. I. Marshall and J. Neilson, J. Med. Eng. Technol. 8, 177 (1984).

    Article  Google Scholar 

  53. E. Huigen, A. Peper, and C. Grimbergen, Med. Biol. Eng. Comput. 40, 332 (2002).

    Article  Google Scholar 

  54. H. de Talhouet and J.G. Webster, Physiol. Meas. 17, 81 (1996).

    Article  Google Scholar 

  55. K.-P. Hoffmann and R. Ruff, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, Lyon, 2007), p. 5739.

  56. T.N. Shaikh, S. Chaudhari, B. Patel, and M. Patel, Int. J. Emerg. Sci. Eng. 3, 11 (2015).

    Google Scholar 

  57. F. Xu and Y. Zhu, Adv. Mater. 24, 5117 (2012).

    Article  MathSciNet  Google Scholar 

  58. P. Mostafalu and S. Sonkusale, RSC Adv. 5, 8680 (2015).

    Article  Google Scholar 

  59. V.K. Varadan, S. Oh, H. Kwon, and P. Hankins, J. Nanotechnol. Eng. Med. 1, 031012 (2010).

    Article  Google Scholar 

  60. V.K. Varadan, P.S. Kumar, S. Oh, L. Kegley, and P. Rai, J. Nanotechnol. Eng. Med. 2, 021011 (2011).

    Article  Google Scholar 

  61. B. Liu, Y. Chen, Z. Luo, W. Zhang, Q. Tu, and X. Jin, J. Biomater. Sci., Polym. Ed. 26, 1229 (2015).

    Article  Google Scholar 

  62. H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, and S.-H. Lee, IEEE Trans. Biomed. Eng. 59, 1472 (2012).

    Article  Google Scholar 

  63. S.M. Lee, H.J. Byeon, J.H. Lee, D.H. Baek, K.H. Lee, J.S. Hong, and S.-H. Lee, Sci. Rep. 4, 6074 (2014).

    Google Scholar 

  64. C.L. Lam, N.N.Z.M. Rajdi, and D.H. Wicaksono, 2013 IEEE Sensors (IEEE, Baltimore, 2013), p. 1.

  65. M. Abu-Saude, S. Consul-Pacareu, and B. Morshed, 2015 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS) (IEEE, San Diego, 2015), p. 1.

  66. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  67. M.J. Allen, V.C. Tung, and R.B. Kaner, Chem. Rev. 110, 132 (2009).

    Article  Google Scholar 

  68. M.K. Yapici, T. Alkhidir, Y.A. Samad, and K. Liao, Sens. Actuat. B 221, 1469 (2015).

    Article  Google Scholar 

  69. G. Ruffini, S. Dunne, E. Farres, P.C. Watts, E. Mendoza, S.R.P. Silva, C. Grau, J. Marco-Pallares, L. Fuentemilla, and B. Vandecasteele, 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’06 (IEEE, New York, 2006), p. 1826.

  70. G. Ruffini, S. Dunne, L. Fuentemilla, C. Grau, E. Farres, J. Marco-Pallarés, P. Watts, and S. Silva, Sens. Actuat. A 144, 275 (2008).

    Article  Google Scholar 

  71. G. Ruffini, S. Dunne, E. Farrés, I. Cester, P.C. Watts, S. Ravi, P. Silva, C. Grau, L. Fuentemilla, and J. Marco-Pallares, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’07 (IEEE, Lyon, 2007), p. 6689.

  72. P.S. Kumar, P. Rai, S. Oh, H. Kwon, and V.K. Varadan, SPIE Proceedings 8548, 85481O (2012).

  73. S. Yao and Y. Zhu, Nanoscale 6, 2345 (2014).

    Article  Google Scholar 

  74. A.J. Bandodkar, W. Jia, C. Yardımcı, X. Wang, J. Ramirez, and J. Wang, Anal. Chem. 87, 394 (2014).

    Article  Google Scholar 

  75. L. Song, A.C. Myers, J.J. Adams, and Y. Zhu, ACS Appl. Mater. Interfaces 6, 4248 (2014).

    Article  Google Scholar 

  76. J. Di, S. Yao, Y. Ye, Z. Cui, J. Yu, T.K. Ghosh, Y. Zhu, and Z. Gu, ACS Nano. 9, 9407 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

This material is based on work supported by the National Science Foundation (NSF) through the ASSIST Engineering Research Center at NC State (EEC-1160483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Zhu, Y. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review. JOM 68, 1145–1155 (2016). https://doi.org/10.1007/s11837-016-1818-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1818-0

Keywords

Navigation