Abstract
Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode–skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode–skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.
Similar content being viewed by others
References
J. Yoo, L. Yan, S. Lee, H. Kim, and H.-J. Yoo, IEEE Trans. Inf. Technol. Biomed. 13, 897 (2009).
F. Martinez-Tabares, G. Cardona-Cuervo, and G. Castellanos-Dominguez, XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (Springer, Seville, 2014), p. 955.
A. Gruetzmann, S. Hansen, and J. Müller, Physiol. Meas. 28, 1375 (2007).
Y.M. Chi, T.-P. Jung, and G. Cauwenberghs, IEEE Rev. Biomed. Eng. 3, 106 (2010).
R. Cochran and T. Rosen, South. Med. J. 73, 1667 (1980).
R.J. Coskey, Arch. Dermatol. 113, 839 (1977).
W. Uter and H. Schwanitz, Contact Dermatitis 34, 230 (1996).
N. Meziane, J. Webster, M. Attari, and A. Nimunkar, Physiol. Meas. 34, R47 (2013).
M.K. Kwak, H.E. Jeong, and K.Y. Suh, Adv. Mater. 23, 3949 (2011).
S. Yao and Y. Zhu, Adv. Mater. 27, 1480 (2015).
R. Vecht, M.A. Gatzoulis, and N. Peters, ECG Diagnosis in Clinical Practiceed (London: Springer, 2009), p. 1.
G.D. Clifford, F. Azuaje, and P. McSharry, Advanced Methods and Tools for ECG Data Analysis, 1st ed. (Norwood: Artech House Inc., 2006), p. 11.
J. Webster, Medical Instrumentation: Application and Design, 4th ed. (Hoboken: Wiley, 2009), p. 205.
P. Griss, H.K. Tolvanen-Laakso, P. Merilainen, and G. Stemme, IEEE Trans. Biomed. Eng. 49, 597 (2002).
L.-D. Liao, I.-J. Wang, S.-F. Chen, J.-Y. Chang, and C.-T. Lin, Sensors 11, 5819 (2011).
A. Cömert, M. Honkala, and J. Hyttinen, BioMed. Eng. OnLine 12, 26 (2013).
A.C. Myers, H. Huang, and Y. Zhu, RSC Adv. 5, 11627 (2015).
M. Yokus and J. Jur, IEEE Trans. Biomed. Eng. 63, 423 (2016).
E. Clar, C. Her, and C. Sturelle, J. Soc. Cosmet. Chem. 26, 337 (1975).
X. Huang, H. Cheng, K. Chen, Y. Zhang, Y. Zhang, Y. Liu, C. Zhu, S.-C. Ouyang, G.-W. Kong, and C. Yu, IEEE Trans. Biomed. Eng. 60, 2848 (2013).
L. Geddes and M. Valentinuzzi, Ann. Biomed. Eng. 1, 356 (1973).
A. Searle and L. Kirkup, Physiol. Meas. 21, 271 (2000).
P. Salvo, R. Raedt, E. Carrette, D. Schaubroeck, J. Vanfleteren, and L. Cardon, Sens. Actuat. A 174, 96 (2012).
J.-H. Moon, D.H. Baek, Y.Y. Choi, K.H. Lee, H.C. Kim, and S.-H. Lee, J. Micromech. Microeng. 20, 025032 (2010).
Y. Meng, Z.B. Li, X. Chen, and J.P. Chen, Microsyst. Technol. 21, 1241 (2015).
Y. Meng, Z. Li, and J. Chen, Microsyst. Technol. (2015). doi:10.1007/s00542-015-2490-y.
J.-Y. Baek, J.-H. An, J.-M. Choi, K.-S. Park, and S.-H. Lee, Sens. Actuat. A 143, 423 (2008).
Y.-H. Chen, M.O. de Beeck, L. Vanderheyden, E. Carrette, V. Mihajlović, K. Vanstreels, B. Grundlehner, S. Gadeyne, P. Boon, and C. Van Hoof, Sensors 14, 23758 (2014).
B. Reyes, H.F. Posada-Quintero, J.R. Bales, A.L. Clement, G.D. Pins, A. Swiston, J. Riistama, J.P. Florian, B. Shykoff, and M. Qin, IEEE Trans. Biomed. Eng. 61, 1863 (2014).
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, and A. Islam, Science 333, 838 (2011).
L. Beckmann, C. Neuhaus, G. Medrano, N. Jungbecker, M. Walter, T. Gries, and S. Leonhardt, Physiol. Meas. 31, 233 (2010).
P. Xu, H. Zhang, and X. Tao, Text. Prog. 40, 183 (2008).
S.M. Lobodzinski and M.M. Laks, J. Electrocardiol. 39, S41 (2006).
G. Paul, R. Torah, S. Beeby, and J. Tudor, Sens. Actuat. A 206, 35 (2014).
T.-H. Kang, C.R. Merritt, E. Grant, B. Pourdeyhimi, and H.T. Nagle, IEEE Trans. Biomed. Eng. 55, 188 (2008).
R. Paradiso, G. Loriga, and N. Taccini, IEEE Trans. Inf. Technol. Biomed. 9, 337 (2005).
V. Marozas, A. Petrenas, S. Daukantas, and A. Lukosevicius, J. Electrocardiol. 44, 189 (2011).
P. Rai, P.S. Kumar, S. Oh, H. Kwon, G.N. Mathur, V.K. Varadan, and M. Agarwal, SPIE Proceedings (International Society for Optics and Photonics, Bellingham, 2012), p. 83440E.
L.-S. Hsu, S.-W. Tung, C.-H. Kuo, and Y.-J. Yang, Sensors 14, 12370 (2014).
P. Griss, P. Enoksson, H.K. Tolvanen-Laakso, P. Meriläinen, S. Ollmar, and G. Stemme, J. Microelectromech. Syst. 10, 10 (2001).
D. Guo, F.E. Tay, L. Yu, L. Xu, M. Nyan, F. Chong, K. Yap, and B. Xu, 2008 5th International Summer School and Symposium on Medical Devices and Biosensors, ISSS-MDBS (IEEE, Hong Kong, 2008), p. 41.
L. Yu, F. Tay, D. Guo, L. Xu, and K. Yap, Sens. Actuat. A 151, 17 (2009).
J.W. Jeong, M.K. Kim, H. Cheng, W.H. Yeo, X. Huang, Y. Liu, Y. Zhang, Y. Huang, and J.A. Rogers, Adv. Healthc. Mater. 3, 642 (2014).
Y.K. Lim, K.K. Kim, and K.S. Park, 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’04 (IEEE, San Francisco, 2004), p. 2383.
Y.G. Lim, K.K. Kim, and K.S. Park, IEEE Trans. Biomed. Eng. 54, 718 (2007).
H.J. Baek, H.B. Lee, J.S. Kim, J.M. Choi, K.K. Kim, and K.S. Park, Telemed. J. E Health 15, 182 (2009).
B. Chamadiya, K. Mankodiya, M. Wagner, R.B. Nasreddine, and U.G. Hofmann, 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (IEEE, Dublin, 2011), p. 101.
S.M. Lee, K.S. Sim, K.K. Kim, Y.G. Lim, and K.S. Park, Med. Biol. Eng. Comput. 48, 447 (2010).
J.M. Lee, F. Pearce, A.D. Hibbs, R. Matthews, and C. Morrissette, Evaluation of a capacitively-coupled, non-contact (through clothing) electrode or ECG monitoring and life signs detection for the objective force warfighter (DTIC Document, 2004).
G. Ruffini, S. Dunne, E. Farrés, J. Marco-Pallarés, C. Ray, E. Mendoza, R. Silva, and C. Grau, Sens. Actuat. A 132, 34 (2006).
J.G. Webster, IEEE Trans. Biomed. Eng. BME-31, 823 (1984).
I. Marshall and J. Neilson, J. Med. Eng. Technol. 8, 177 (1984).
E. Huigen, A. Peper, and C. Grimbergen, Med. Biol. Eng. Comput. 40, 332 (2002).
H. de Talhouet and J.G. Webster, Physiol. Meas. 17, 81 (1996).
K.-P. Hoffmann and R. Ruff, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, Lyon, 2007), p. 5739.
T.N. Shaikh, S. Chaudhari, B. Patel, and M. Patel, Int. J. Emerg. Sci. Eng. 3, 11 (2015).
F. Xu and Y. Zhu, Adv. Mater. 24, 5117 (2012).
P. Mostafalu and S. Sonkusale, RSC Adv. 5, 8680 (2015).
V.K. Varadan, S. Oh, H. Kwon, and P. Hankins, J. Nanotechnol. Eng. Med. 1, 031012 (2010).
V.K. Varadan, P.S. Kumar, S. Oh, L. Kegley, and P. Rai, J. Nanotechnol. Eng. Med. 2, 021011 (2011).
B. Liu, Y. Chen, Z. Luo, W. Zhang, Q. Tu, and X. Jin, J. Biomater. Sci., Polym. Ed. 26, 1229 (2015).
H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, and S.-H. Lee, IEEE Trans. Biomed. Eng. 59, 1472 (2012).
S.M. Lee, H.J. Byeon, J.H. Lee, D.H. Baek, K.H. Lee, J.S. Hong, and S.-H. Lee, Sci. Rep. 4, 6074 (2014).
C.L. Lam, N.N.Z.M. Rajdi, and D.H. Wicaksono, 2013 IEEE Sensors (IEEE, Baltimore, 2013), p. 1.
M. Abu-Saude, S. Consul-Pacareu, and B. Morshed, 2015 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS) (IEEE, San Diego, 2015), p. 1.
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).
M.J. Allen, V.C. Tung, and R.B. Kaner, Chem. Rev. 110, 132 (2009).
M.K. Yapici, T. Alkhidir, Y.A. Samad, and K. Liao, Sens. Actuat. B 221, 1469 (2015).
G. Ruffini, S. Dunne, E. Farres, P.C. Watts, E. Mendoza, S.R.P. Silva, C. Grau, J. Marco-Pallares, L. Fuentemilla, and B. Vandecasteele, 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’06 (IEEE, New York, 2006), p. 1826.
G. Ruffini, S. Dunne, L. Fuentemilla, C. Grau, E. Farres, J. Marco-Pallarés, P. Watts, and S. Silva, Sens. Actuat. A 144, 275 (2008).
G. Ruffini, S. Dunne, E. Farrés, I. Cester, P.C. Watts, S. Ravi, P. Silva, C. Grau, L. Fuentemilla, and J. Marco-Pallares, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’07 (IEEE, Lyon, 2007), p. 6689.
P.S. Kumar, P. Rai, S. Oh, H. Kwon, and V.K. Varadan, SPIE Proceedings 8548, 85481O (2012).
S. Yao and Y. Zhu, Nanoscale 6, 2345 (2014).
A.J. Bandodkar, W. Jia, C. Yardımcı, X. Wang, J. Ramirez, and J. Wang, Anal. Chem. 87, 394 (2014).
L. Song, A.C. Myers, J.J. Adams, and Y. Zhu, ACS Appl. Mater. Interfaces 6, 4248 (2014).
J. Di, S. Yao, Y. Ye, Z. Cui, J. Yu, T.K. Ghosh, Y. Zhu, and Z. Gu, ACS Nano. 9, 9407 (2015).
Acknowledgement
This material is based on work supported by the National Science Foundation (NSF) through the ASSIST Engineering Research Center at NC State (EEC-1160483).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yao, S., Zhu, Y. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review. JOM 68, 1145–1155 (2016). https://doi.org/10.1007/s11837-016-1818-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-016-1818-0