Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Grain Boundary Segregation of Interstitial and Substitutional Impurity Atoms in Alpha-Iron

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The macroscopic behavior of polycrystalline materials is influenced by the local variation of properties caused by the presence of impurities and defects. The effect of these impurities at the atomic scale can either embrittle or strengthen grain boundaries (GBs) within. Thus, it is imperative to understand the energetics associated with segregation to design materials with desirable properties. In this study, molecular statics simulations were employed to analyze the energetics associated with the segregation of various elements (helium, hydrogen, carbon, phosphorous, and vanadium) to four 〈100〉 (Σ5 and Σ13 GBs) and six 〈110〉 (Σ3, Σ9, and Σ11 GBs) symmetric tilt grain boundaries in α-Fe. This knowledge is important for designing stable interfaces in harsh environments. Simulation results show that the local atomic arrangements within the GB region and the resulting structural units have a significant influence on the magnitude of binding energies of the impurity (interstitial and substitutional) atoms. These data also suggest that the site-to-site variation of energies within a boundary is substantial. Comparing the binding energies of all 10 boundaries shows that the Σ3(112) boundary possesses a much smaller binding energy for all interstitial and substitutional impurity atoms among the boundaries examined in this study. Additionally, based on the Rice–Wang model, our total energy calculations show that V has a significant beneficial effect on the Fe grain boundary cohesion, while P has a detrimental effect on grain boundary cohesion, much weaker than H and He. This is significant for applications where extreme environmental damage generates lattice defects and grain boundaries act as sinks for both interstitial and substitutional impurity atoms. This methodology provides us with a tool to effectively identify the local as well as the global segregation behavior that can influence the GB cohesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Kalil and C. Wadia, Materials Genome Initiative: A Renaissance of American Manufacturing (Washington, DC: The White House, 2011).

    Google Scholar 

  2. H. Gleiter, Mater. Sci. Eng. 52, 91 (1982).

    Article  Google Scholar 

  3. P. Goodhew, Grain Boundary Structure and Kinetics (Metals Park, OH: American Society for Metals, 1980).

    Google Scholar 

  4. D. Wolf, Acta Metall. 37, 1983 (1989).

    Article  Google Scholar 

  5. A. Sutton and V. Vitek, Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 309, 1 (1983).

    Article  Google Scholar 

  6. G.J. Wang, A. Sutton, and V. Vitek, Acta Metall. 32, 1093 (1984).

    Article  Google Scholar 

  7. W. Gui-Jin and V. Vitek, Acta Metall. 34, 951 (1986).

    Article  Google Scholar 

  8. J. Rittner and D. Seidman, Phys. Rev. B 54, 6999 (1996).

    Article  Google Scholar 

  9. I. Adlakha, M.A. Bhatia, K.N. Solanki, and M.A. Tschopp, ArXiv E-prints 1309, 3634 (2013).

    Google Scholar 

  10. K.N. Solanki, M.A. Tschopp, M.A. Bhatia, and N.R. Rhodes, Metall Mater. Trans. 44, 1365 (2013).

    Article  Google Scholar 

  11. M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, and M.F. Horstemeyer, Phys. Rev. B 85, 064108 (2012).

    Article  Google Scholar 

  12. M.A. Bhatia and K.N. Solanki, ArXiv E-prints 1310.2643 (2013).

    Google Scholar 

  13. J.M. Burgers, Proc. Phys. Soc. 52, 23 (1940).

    Article  Google Scholar 

  14. L. Bragg and J.F. Nye, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 190, 474 (1947).

    Google Scholar 

  15. W.T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).

    Article  MATH  Google Scholar 

  16. G.H. Bishop and B. Chalmers, Scr. Metall. 2, 133 (1968).

    Article  Google Scholar 

  17. J. Hirth, Acta Metall. 22, 1023 (1974).

    Article  Google Scholar 

  18. H. Grimmer, W. Bollmann, and D.H. Warrington, Acta Crystallogr. A 30, 197 (1974).

    Article  Google Scholar 

  19. P.D. Bristowe and A.G. Crocker, Philos. Mag. 38, 487 (1978).

    Article  Google Scholar 

  20. R.C. Pond, Philos. Mag. 39, 679 (1979).

    Article  Google Scholar 

  21. R.C. Pond, D.A. Smith, and V. Vitek, Acta Metall. 27, 235 (1979).

    Article  Google Scholar 

  22. K.W. Ingle and A.G. Crocker, Philos. Mag. 41, 713 (1980).

    Article  Google Scholar 

  23. V. Vitek, D. Smith, and R. Pond, Philos. Mag. 41, 649 (1980).

    Article  Google Scholar 

  24. A. Sutton, Philos. Mag. 46, 171 (1982).

    Article  Google Scholar 

  25. A. Sutton, Philos. Mag. Lett. 59, 53 (1989).

    Article  Google Scholar 

  26. M.A. Tschopp and D.L. Mcdowell, Philos. Mag. 87, 3871 (2007).

    Article  Google Scholar 

  27. M.A. Tschopp and D.L. McDowell, Philos. Mag. 87, 3147 (2007).

    Article  Google Scholar 

  28. Y. Mishin, M.R. Sørensen, and A.F. Voter, Philos. Mag. 81, 2591 (2001).

    Article  Google Scholar 

  29. M.A. Tschopp and D.L. McDowell, Int. J. Plast 24, 191 (2008).

    Article  Google Scholar 

  30. D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell, Acta Mater. 55, 705 (2007).

    Article  Google Scholar 

  31. M.A. Tschopp, G.J. Tucker, and D.L. McDowell, Comput. Mater. Sci. 44, 351 (2008).

    Article  Google Scholar 

  32. D.E. Spearot, K.I. Jacob, and D.L. McDowell, Acta Mater. 53, 3579 (2005).

    Article  Google Scholar 

  33. D.M. Saylor, B.S. El Dasher, A.D. Rollett, and G.S. Rohrer, Acta Mater. 52, 3649 (2004).

    Article  Google Scholar 

  34. D. Brandon, B. Ralph, S. Ranganathan, and M. Wald, Acta Metall. 12, 813 (1964).

    Article  Google Scholar 

  35. R.C. Pond, Proc. R. Soc. Lond. Math. Phys. Sci. 357, 471 (1977).

    Article  Google Scholar 

  36. H. Kokawa, T. Watanabe, and S. Karashima, Philos. Mag. 44, 1239 (1981).

    Article  Google Scholar 

  37. R.W. Balluffi, Y. Komem, and T. Schober, Surf. Sci. 31, 68 (1972).

    Article  Google Scholar 

  38. M.A. Rodriguez, D.M. Follstaedt, J.A. Knapp, L.N. Brewer, E.A. Holm, S.M. Foiles, K.M. Hattar, B.B. Clark, D.L. Olmsted, and D.L. Medlin, Science at the Interface: Grain Boundaries in Nanocrystalline Metals (Albuquerque, NM: Sandia National Laboratories, 2009).

    Book  Google Scholar 

  39. V. Vitek and G.J. Wang, Surf. Sci. 144, 110 (1984).

    Article  Google Scholar 

  40. P. Lejček and S. Hofmann, Crit. Rev. Solid State Mater. Sci. 20, 1 (1995).

    Article  Google Scholar 

  41. W. Swiatnicki, S. Lartigue-Korinek, and J.Y. Laval, Acta Metall. Mater. 43, 795 (1995).

    Article  Google Scholar 

  42. T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturla, Nature 406, 871 (2000).

    Article  Google Scholar 

  43. A. Möslang and T. Wiss, Nat. Mater. 5, 679 (2006).

    Article  Google Scholar 

  44. W.T. Geng, A.J. Freeman, R. Wu, and G.B. Olson, Phys. Rev. B 62, 6208 (2000).

    Article  Google Scholar 

  45. J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto, and Y. Ikuhara, Science 311, 212 (2006).

    Article  Google Scholar 

  46. M. Yamaguchi, Metall. Mater. Trans. 42, 319 (2011).

    Article  Google Scholar 

  47. C.J. McMahon Jr and V. Vitek, Acta Metall. 27, 507 (1979).

    Article  Google Scholar 

  48. D.N. Seidman, B.W. Krakauer, and D. Udler, J. Phys. Chem. Solids 55, 1035 (1994).

    Article  Google Scholar 

  49. A. Sutton and R. Balluffi, Interfaces in Crystalline Materials (Oxford, U.K.: Clarendon Press, 1995).

    Google Scholar 

  50. E.D. Hondros and M.P. Seah, Int. Met. Rev. 22, 262 (1977).

    Article  Google Scholar 

  51. M. Yamaguchi, M. Shiga, and H. Kaburaki, Science 307, 393 (2005).

    Article  Google Scholar 

  52. M.A. Tschopp, M.F. Horstemeyer, F. Gao, X. Sun, and M. Khaleel, Scr. Mater. 64, 908 (2011).

    Article  Google Scholar 

  53. X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga, Science 327, 1631 (2010).

    Article  Google Scholar 

  54. N.R. Rhodes, M.A. Tschopp, and K.N. Solanki, Model. Simul. Mater. Sci. Eng. 21, 035009 (2013).

    Article  Google Scholar 

  55. M.A. Tschopp, F. Gao, L. Yang, and K.N. Solanki, ArXiv E-prints 1309.6337 (2013).

    Google Scholar 

  56. J.R. Rice and J.-S. Wang, Mater. Sci. Eng. 107, 23 (1989).

    Article  Google Scholar 

  57. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  MATH  Google Scholar 

  58. A. Ramasubramaniam, M. Itakura, and E.A. Carter, Phys. Rev. B 79, 174101 (2009).

    Article  Google Scholar 

  59. M.I. Mendelev, S. Han, W. Son, G.J. Ackland, and D.J. Srolovitz, Phys. Rev. B 76, 214105 (2007).

    Article  Google Scholar 

  60. G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev, J. Phys. Condens. Matter 16, S2629 (2004).

    Article  Google Scholar 

  61. D.J. Hepburn and G.J. Ackland, Phys. Rev. B 78, 165115 (2008).

    Article  Google Scholar 

  62. K. Refson, Comput. Phys. Commun. 126, 310 (2000).

    Article  MATH  Google Scholar 

  63. F. Gao, H. Deng, H.L. Heinisch, and R.J. Kurtz, J. Nucl. Mater. 418, 115 (2011).

    Article  Google Scholar 

  64. M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta, Philos. Mag. 83, 3977 (2003).

    Article  Google Scholar 

  65. E. Polak and G. Ribiere, Math. Model. Numer. Anal. 3, 35 (1969).

    MATH  MathSciNet  Google Scholar 

  66. D. Wolf, Acta Metall. Mater. 38, 781 (1990).

    Article  Google Scholar 

  67. M. Yamaguchi and V. Vitek, Philos. Mag. 34, 1 (1976).

    Article  Google Scholar 

  68. V.V. Zabil’skii, Metall. Sci. Heat Treat. 29, 32 (1987).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to recognize Dr. W. Mullins and Dr. A.K. Vasudevan from the Office of Naval Research for providing their insights and valuable suggestions. This material is based on work supported by the Office of Naval Research under Contract No. N000141110793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Solanki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, M., Tschopp, M.A. & Solanki, K.N. Grain Boundary Segregation of Interstitial and Substitutional Impurity Atoms in Alpha-Iron. JOM 66, 129–138 (2014). https://doi.org/10.1007/s11837-013-0807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0807-9

Keywords

Navigation