Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Adsorption in combination with ozonation for the treatment of textile waste water: a critical review

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Intrusion of synthetic textile dyes in the ecosystem has been recognized as a serious issue worldwide. The effluents generated from textiles contain large amount of recalcitrant unfixed dyes which are regarded as emerging contaminants in the field of waste water study. Removal of various toxic dyes often includes diverse and complex set of physico-chemical, biological and advanced oxidation processes adopted for treatment. Adsorption in itself is a well-known technique utilized for treatment of textile effluents using a variety of adsorbents. In addition, ozonation deals with effective removal of dyes using high oxidising power of ozone. The review summarizes dye removal study by a combination of ozonation and adsorption methods. Also, to acquire an effective interpretation of this combined approach of treating wastewater, a thorough study has been made which is deliberated here. Results assert that, with the combined ability of ozone and a catalyst/adsorbent, there is high possibility of total elimination of dyes from waste water. Several synthetically prepared materials have been used along with few natural materials during the combined treatment. However, considering practical applicability, some areas were identified during the study where work needs to be done for effective implementation of the combined treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper P. Removing colour from dyehouse waste waters: a critical review of technology available. Journal of the Society of Dyers and Colourists, 1993, 109(3): 97–100

    Article  CAS  Google Scholar 

  2. Rajkumar D, Song B J, Kim J G. Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes and Pigments, 2007, 72(1): 1–7

    Article  Google Scholar 

  3. Mittal A, Kaur D, Mittal J. Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials. Journal of Hazardous Materials, 2009, 163(2-3): 568–577

    Article  CAS  Google Scholar 

  4. Robinson T, Mc Mullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 2001, 77(3): 247–255

    Article  CAS  Google Scholar 

  5. Mittal A, Kaur D, Mittal J. Applicability of waste materials–bottom ash and deoiled soya–as adsorbents for the removal and recovery of a hazardous dye, brilliant green. Journal of Colloid and Interface Science, 2008, 326(1): 8–17

    Article  CAS  Google Scholar 

  6. Bapat S A, Jaspal D K. Parthenium hysterophorus: novel adsorbent for the removal of heavy metals and dyes. Global Journal of Environmental Science and Management, 2016, 2(2): 135–144

    Google Scholar 

  7. Gupta V K, Khamparia S, Tyagi I, Jaspal D, Malviya A. Decolorization of mixture of dyes: a critical review. Global Journal of Environmental Science and Management, 2015, 1(1): 71–94

    Google Scholar 

  8. Pearce C I, Lloyd J R, Guthrie J T. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 2003, 58(3): 179–196

    Article  CAS  Google Scholar 

  9. Khamparia S, Jaspal D. Investigation of adsorption of Rhodamine B onto a natural adsorbent Argemone mexicana. Journal of Environmental Management, 2016, 183(P3): 786–793

    Article  CAS  Google Scholar 

  10. Joshi M, Bansal R, Purwar R. Colour removal from textile effluents. Indian Journal of Fibre and Textile Research, 2004, 29(2): 239–259

    CAS  Google Scholar 

  11. Anjaneyulu Y, Chary N S, Raj D S. Decolourization of industrial effluents–available methods and emerging technologies: a review. Reviews in Environmental Science and Biotechnology, 2005, 4(4): 245–273

    Article  CAS  Google Scholar 

  12. Adegoke K A, Bello O S. Dye sequestration using agricultural wastes as adsorbents. Water Resources and Industry, 2015, 12: 8–24

    Article  Google Scholar 

  13. Guo Y, Yang L, Cheng X, Wang X. The application and reaction mechanism of catalytic ozonation in water treatment. Journal of Environmental and Analytical Toxicology, 2012, 2(7): 1–6

    Article  CAS  Google Scholar 

  14. Gogate P R, Pandit A B. A review of imperative technologies for wastewater treatment II: hybrid methods. Advances in Environmental Research, 2004, 8(3): 553–597

    Article  CAS  Google Scholar 

  15. Oller I, Malato S, Sánchez-Pérez J A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination: a review. Science of the Total Environment, 2011, 409(20): 4141–4166

    Article  CAS  Google Scholar 

  16. van der Zee F P, Villaverde S. Combined anaerobic-aerobic treatment of azo dyes: a short review of bioreactor studies. Water Research, 2005, 39(8): 1425–1440

    Article  Google Scholar 

  17. Beltran F J, Rivas F J, Gimeno O. Comparison between photocatalytic ozonation and other oxidation processes for the removal of phenols from water. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2005, 80(9): 973–984

    Article  CAS  Google Scholar 

  18. de Moraes S G, Freire R S, Durán N. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere, 2000, 40(4): 369–373

    Article  Google Scholar 

  19. Anandan S, Lee G J, Chen P K, Fan C, Wu J J. Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods. Industrial & Engineering Chemistry Research, 2010, 49(20): 9729–9737

    Article  CAS  Google Scholar 

  20. Agustina T E, Ang H M, Vareek V K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2005, 6(4): 264–273

    Article  CAS  Google Scholar 

  21. Ghoreishi S M, Haghighi R. Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chemical Engineering Journal, 2003, 95(1): 163–169

    Article  CAS  Google Scholar 

  22. Lee L Y, Ng H Y, Ong S L, Hu J Y, Tao G, Kekre K, Viswanath B, Lay W, Seah H. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery. Water Research, 2009, 43(16): 3948–3955

    Article  CAS  Google Scholar 

  23. García-Montaño J, Domènech X, García-Hortal J A, Torrades F, Peral J. The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. Journal of Hazardous Materials, 2008, 154(1-3): 484–490

    Article  Google Scholar 

  24. Libra J A, Sosath F. Combination of biological and chemical processes for the treatment of textile wastewater containing reactive dyes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2003, 78(11): 1149–1156

    Article  CAS  Google Scholar 

  25. Stock N L, Peller J, Vinodgopal K, Kamat P V. Combinative sonolysis and photocatalysis for textile dye degradation. Environmental Science & Technology, 2000, 34(9): 1747–1750

    Article  CAS  Google Scholar 

  26. Tezcanli-Güyer G, Ince N H. Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics, 2004, 42(1-9): 603–609

    Article  Google Scholar 

  27. Chakraborty S, De S, Basu J K, Das Gupta S. Treatment of a textile effluent: application of a combination method involving adsorption and nanofiltration. Desalination, 2005, 174(1): 73–85

    Article  CAS  Google Scholar 

  28. Mittal A, Malviya A, Kaur D, Mittal J, Kurup L. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. Journal of Hazardous Materials, 2007, 148(1-2): 229–240

    Article  CAS  Google Scholar 

  29. Prieto O, Fermoso J, Nunez Y, Del Valle J L, Irusta R. Decolouration of textile dyes in wastewaters by photocatalysis with TiO2. Solar Energy, 2005, 79(4): 376–383

    Article  CAS  Google Scholar 

  30. Khamparia S, Jaspal D. Adsorptive removal of Direct Red 81 dye from aqueous solution onto Argemone mexicana. Sustainable Environment Research, 2016, 26(3): 117–123

    Article  Google Scholar 

  31. Orge C A, Sousa J P, Gonçalves F, Freire C, Órfao J J, Pereira M F. Development of novel mesoporous carbon materials for the catalytic ozonation of organic pollutants. Catalysis Letters, 2009, 132(1-2): 1–9

    Article  CAS  Google Scholar 

  32. Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 2005, 30(1): 38–70

    Article  CAS  Google Scholar 

  33. de Souza S M, Bonilla K A, de Souza A A. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. Journal of Hazardous Materials, 2010, 179(1-3): 35–42

    Article  Google Scholar 

  34. Valdes H, Sanchez-Polo M, Rivera-Utrilla J, Zaror C A. Effect of ozone treatment on surface properties of activated carbon. Langmuir, 2002, 18(6): 2111–2116

    Article  CAS  Google Scholar 

  35. Faria P C, Orfao J J, Pereira M F. Ozone decomposition in water catalyzed by activated carbon: influence of chemical and textural properties. Industrial & Engineering Chemistry Research, 2006, 45 (8): 2715–2721

    Article  CAS  Google Scholar 

  36. Arslan-Alaton I, Seremet O. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination. Journal of Environmental Science and Health. Part A, 2004, 39(7): 1681–1694

    Article  Google Scholar 

  37. Chiang H L, Huang C P, Chiang P C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment. Chemosphere, 2002, 47(3): 257–265

    Article  CAS  Google Scholar 

  38. Pereira MF, Goncalves A G, Orfao J J. Carbon materials as catalysts for the ozonation of organic pollutants in water. Boletin del Grupo Espanol del Carbon, 2014, (31): 18–24

    Google Scholar 

  39. Avramescu SM, Mihalache N, Bradu C, Neata M, Udrea I. Catalytic ozonation of acid red 88 from aqueous solutions. Catalysis Letters, 2009, 129(3–4): 273–280

    Article  CAS  Google Scholar 

  40. Jans U, Hoigne J. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH radicals. Ozone Science and Engineering, 1998, 20(1): 67–90

    Article  CAS  Google Scholar 

  41. Beltran F J, Masa F J, Pocostales J P. A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment. Applied Catalysis B: Environmental, 2009, 92(3): 393–400

    Google Scholar 

  42. Faria P C, Orfão J J, Pereira M F. Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon. Water Research, 2005, 39(8): 1461–1470

    Article  CAS  Google Scholar 

  43. Arslan-Alaton I. Pretreatment of textile dye carriers with ozonation and enhanced ozonation. Environmental Engineering Science, 2004, 21(4): 507–514

    Article  CAS  Google Scholar 

  44. Liu S S, He J X. Research on Reuse of Low Concentration Dyeing Effluent Decolorized Continuously On-line by Ozone Combined with Active Carbon. Journal of Donghua University, 2006, 2: 3 (Natural Science)

    Google Scholar 

  45. Soares O S, Faria P C, Orfao J J, Pereira M F. Ozonation of textile effluents and dye solutions in the presence of activated carbon under continuous operation. Separation Science and Technology, 2007, 42 (7): 1477–1492

    Article  CAS  Google Scholar 

  46. Lei L, Gu L, Zhang X, Su Y. Catalytic oxidation of highly concentrated real industrial wastewater by integrated ozone and activated carbon. Applied Catalysis A, General, 2007, 327(2): 287–294

    Article  CAS  Google Scholar 

  47. Gao L, Zhai Y, Ma H, Wang B. Degradation of cationic dye methylene blue by ozonation assisted with kaolin. Applied Clay Science, 2009, 46(2): 226–229

    Article  CAS  Google Scholar 

  48. Beak M H, Ijagbemi C O, Kim D S. Azo dye Acid Red 27 decomposition kinetics during ozone oxidation and adsorption processes. Journal of Environmental Science and Health. Part A, 2009, 44(6): 623–629

    Article  CAS  Google Scholar 

  49. Konsowa A H, Ossman M E, Chen Y, Crittenden J C. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon. Journal of Hazardous Materials, 2010, 176(1-3): 181–185

    Article  CAS  Google Scholar 

  50. Huang F, Luo M, Cui L, Wu G. Catalytic ozonation of methylene blue in aqueous solution by loading transition metal (Co/Cu/Fe/Mn) on carbon. Korean Journal of Chemical Engineering, 2015, 32(2): 268–273

    Article  CAS  Google Scholar 

  51. He H, Wu D, Lv Y, Ma L. Enhanced mineralization of aqueous Reactive Black 5 by catalytic ozonation in the presence of modified GAC. Desalination and Water Treatment, 2016, 57(32): 14997–15006

    Article  CAS  Google Scholar 

  52. Oguz E, Keskinler B. Removal of colour and COD from synthetic textile wastewaters using O3, PAC, H2O2 and HCO3-. Journal of Hazardous Materials, 2008, 151(2-3): 753–760

    Article  CAS  Google Scholar 

  53. Sun B, Gao M, Arowo M, Wang J, Chen J, Meng H, Shao L. Ozonation of Acid Red 14 in the presence of inorganic salts in a microporous tube-in-tube microchannel reactor. Industrial & Engineering Chemistry Research, 2014, 53(49): 19071–19076

    Article  CAS  Google Scholar 

  54. Perez A A, Poznyak T I, Chairez J I. Effect of the interaction between dye and acetic acid on the decomposition of Basic Green 4 with additive by ozone. Journal of Environmental Science and Health. Part A, 2014, 49(1): 18–26

    Article  CAS  Google Scholar 

  55. Lin S H. Adsorption of disperse dye by powdered activated carbon. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1993, 57(4): 387–391

    Article  CAS  Google Scholar 

  56. Papic S, Koprivanac N, Bozic A L, Metes A. Removal of some reactive dyes from synthetic wastewater by combined Al (III) coagulation/carbon adsorption process. Dyes and Pigments, 2004, 62(3): 291–298

    Article  CAS  Google Scholar 

  57. Harrelkas F, Azizi A, Yaacoubi A, Benhammou A, Pons M N. Treatment of textile dye effluents using coagulation–flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination, 2009, 235(1): 330–339

    Article  CAS  Google Scholar 

  58. Rivera-Utrilla J, Méndez-Díaz J, Sánchez-Polo M, Ferro-García M A, Bautista-Toledo I. Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O3/H2O2. Water Research, 2006, 40(8): 1717–1725

    Article  CAS  Google Scholar 

  59. Beltrán F J, Pocostales J P, Alvarez P M, Jaramillo J. Mechanism and kinetic considerations of TOC removal from the powdered activated carbon ozonation of diclofenac aqueous solutions. Journal of Hazardous Materials, 2009, 169(1-3): 532–538

    Article  Google Scholar 

  60. Kovalova L, Siegrist H, von Gunten U, Eugster J, Hagenbuch M, Wittmer A, Moser R, Mc Ardell C S. Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environmental Science & Technology, 2013, 47(14): 7899–7908

    Article  CAS  Google Scholar 

  61. Zhang J C, Wang Y H, Song L F, Hu J Y, Ong S L, NgWJ, Lee L Y. Feasibility investigation of refinery wastewater treatment by combination of PACs and coagulant with ultrafiltration. Desalination, 2005, 174(3): 247–256

    Article  CAS  Google Scholar 

  62. Feng Y, Shi W J, Tan D J, Chen Q Y, Zhang H H, Du S. Tertiary purification of biologically–treated effluent of dye-making wastewater by activated carbon catalytic ozonation. Acta Scientiae Circumstantiae, 2013, 10: 12

    Google Scholar 

  63. Wu G, Wei W, Cui L. Adsorption and catalytic ozonation performance of activated carbon and cobalt-supported activated carbon derived from brewing yeast. Canadian Journal of Chemical Engineering, 2014, 92(1): 36–40

    Article  CAS  Google Scholar 

  64. Gul S, Ozcan O, Erbatur O. Ozonation of CI Reactive Red 194 and CI Reactive Yellow 145 in aqueous solution in the presence of granular activated carbon. Dyes and Pigments, 2007, 75(2): 426–431

    Article  Google Scholar 

  65. Gholami-Borujeni F, Naddafi K, Nejatzade-Barandozi F. Application of catalytic ozonation in treatment of dye from aquatic solutions. Desalination and Water Treatment, 2013, 51(34-36): 6545–6551

    Article  CAS  Google Scholar 

  66. Pachhade K, Sandhya S, Swaminathan K. Ozonation of reactive dye, Procion Red MX-5B catalyzed by metal ions. Journal of Hazardous Materials, 2009, 167(1-3): 313–318

    Article  CAS  Google Scholar 

  67. Wu C H, Kuo C Y, Chang C L. Decolorization of azo dyes using catalytic ozonation. Reaction Kinetics and Catalysis Letters, 2007, 91(1): 161–168

    Article  CAS  Google Scholar 

  68. Li Z, Zhao J, Zhong W, Duan E, Li G, Liu Y, Gao X. Efficiency and kinetics of catalytic ozonation of Acid Red B over Cu-Mn/g-Al2O3 catalysts. Ozone Science and Engineering, 2015, 37(3): 287–293

    Article  CAS  Google Scholar 

  69. Khuntia S, Majumder S K, Ghosh P. Catalytic ozonation of dye in a microbubble system: hydroxyl radical contribution and effect of salt. Journal of Environmental Chemical Engineering, 2016, 4(2): 2250–2258

    Article  CAS  Google Scholar 

  70. Mehta B, Chokshi N, Ruparelia J P. A Cerium oxide supported on Activated Carbon for Catalytic Ozonation of Reactive Black-5. CHEMCON-2014 IICHE, 2014 https://www.researchgate.net/profile/Nikita_Chokshi/publication/273125248_A_CERIUM_OXIDE_SUPPORTED_ON_ACTIVATED_CARBON_FOR_CATALYTIC_OZONATION_OF_REACTIVE_BLACK-5/links/54f7fcdd0cf210398e93be96.pdf

  71. Wu J, Gao H, Yao S, Chen L, Gao Y, Zhang H. Degradation of crystal violet by catalytic ozonation using Fe/activated carbon catalyst. Separation and Purification Technology, 2015, 147: 179–185

    Article  CAS  Google Scholar 

  72. Polat D, Balci I, Ozbelge T A. Catalytic ozonation of an industrial textile wastewater in a heterogeneous continuous reactor. Journal of Environmental Chemical Engineering, 2015, 3(3): 1860–1871

    Article  CAS  Google Scholar 

  73. Sun H, Sun M, Zhang Y, Quan X. Catalytic ozonation of reactive red X-3B in aqueous solution under low pressure: decolorization and OH$ generation. Frontiers of Environmental Science & Engineering, 2015, 9(4): 591–595

    Article  CAS  Google Scholar 

  74. Asgari G, Hoseinzadeh E, Taghavi M, Jafari J, Sidmohammadi A. Removal of Reactive Black 5 from Aqueous solution using catalytic. Jundishapur Journal of Health Sciences, 2012, 4(2): 21–30

    Google Scholar 

  75. Liu X, Zhou Z, Jing G, Fang J. Catalytic ozonation of Acid Red B in aqueous solution over a Fe–Cu–O catalyst. Separation and Purification Technology, 2013, 115: 129–135

    Article  CAS  Google Scholar 

  76. Orge C A, Orfao J J, Pereira M F, Barbero B P, Cadus L E. Lanthanum-based perovskites as catalysts for the ozonation of selected organic compounds. Applied Catalysis B: Environmental, 2013, 140: 426–432

    Article  Google Scholar 

  77. Hassan M, Hawkyard C J. Decolourisation of dyes and dye house effluent in a bubble-column reactor by heterogeneous catalytic ozonation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2006, 81(2): 201–207

    Article  CAS  Google Scholar 

  78. Faria P C, Orfao J J, Pereira M F. Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents. Applied Catalysis B: Environmental, 2009, 88(3): 341–350

    Article  CAS  Google Scholar 

  79. Pirgalioglu S, Ozbelge T A. Comparison of non-catalytic and catalytic ozonation processes of three different aqueous single dye solutions with respect to powder copper sulfide catalyst. Applied Catalysis A, General, 2009, 363(1): 157–163

    Article  CAS  Google Scholar 

  80. Chen H W, Kuo Y L, Chiou C S, You S W, Ma C M, Chang C T. Mineralization of reactive Black 5 in aqueous solution by ozone/H2O2 in the presence of a magnetic catalyst. Journal of Hazardous Materials, 2010, 174(1-3): 795–800

    Article  CAS  Google Scholar 

  81. Zhu S N, Hui K N, Hong X, Hui K S. Catalytic ozonation of basic Yellow 87 with a reusable catalyst chip. Chemical Engineering Journal, 2014, 242: 180–186

    Article  CAS  Google Scholar 

  82. Lu J, Wei X, Chang Y, Tian S, Xiong Y. Role of Mg in mesoporous MgFe2O4 for efficient catalytic ozonation of Acid Orange II. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(4): 985–993

    Article  CAS  Google Scholar 

  83. Moussavi G, Mahmoudi M. Degradation and biodegradability improvement of the reactive Red 198 azo dye using catalytic ozonation with MgO nanocrystals. Chemical Engineering Journal, 2009, 152(1): 1–7

    Article  CAS  Google Scholar 

  84. Pugazhenthiran N, Sathishkumar P, Murugesan S, Anandan S. Effective degradation of Acid Orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles. Chemical Engineering Journal, 2011, 168(3): 1227–1233

    Article  CAS  Google Scholar 

  85. Zhang S, Wang D, Quan X, Zhou L, Zhang X. Multi-walled carbon nanotubes immobilized on zero-valent iron plates (Fe0-CNTs) for catalytic ozonation of methylene blue as model compound in a bubbling reactor. Separation and Purification Technology, 2013, 116: 351–359

    Article  CAS  Google Scholar 

  86. Qu R, Xu B, Meng L, Wang L, Wang Z. Ozonation of indigo enhanced by carboxylated carbon nanotubes: performance optimization, degradation products, reaction mechanism and toxicity evaluation. Water Research, 2015, 68: 316–327

    Article  CAS  Google Scholar 

  87. Hu E, Wu X, Shang S, Tao X M, Jiang S X, Gan L. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. Journal of Cleaner Production, 2016, 112: 4710–4718

    Article  CAS  Google Scholar 

  88. Valdés H, Tardón R F, Zaror C A. Methylene blue removal from contaminated waters using heterogeneous catalytic ozonation promoted by natural zeolite: mechanism and kinetic approach. Environmental Technology, 2012, 33(16-18): 1895–1903

    Article  Google Scholar 

  89. Wang Y H, Zhang J C, Song L F, Hu J Y, Ong S L, Ng W J. Adsorption removal of phenol in water and simultaneous regeneration by catalytic oxidation. Environmental Engineering Science, 2005, 22(5): 608–614

    Article  CAS  Google Scholar 

  90. Dong Y, He K, Zhao B, Yin Y, Yin L, Zhang A. Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite. Catalysis Communications, 2007, 8(11): 1599–1603

    Article  CAS  Google Scholar 

  91. Valdés H, Godoy H P, Zaror C A. Heterogeneous catalytic ozonation of cationic dyes using volcanic sand. Water Science and Technology, 2010, 61(12): 2973–2978

    Article  Google Scholar 

  92. Gül S, Eren O, Kir S, Onal Y. A comparison of different activated carbon performances on catalytic ozonation of a model azo reactive dye. Water Science and Technology, 2012, 66(1): 179–184

    Article  Google Scholar 

  93. Valdés H, Tardón R F, Zaror C A. Methylene blue removal from contaminated waters using O3, natural zeolite, and O3/zeolite. Water Science and Technology, 2009, 60(6): 1419–1424

    Article  Google Scholar 

  94. Valdes H, Tardon R F, Zaror C A. Role of surface hydroxyl groups of acid-treated natural zeolite on the heterogeneous catalytic ozonation of methylene blue contaminated waters. Chemical Engineering Journal, 2012, 211: 388–395

    Article  Google Scholar 

  95. Taseidifar M, Khataee A, Vahid B, Khorram S, Joo SW. Production of nanocatalyst from natural magnetite by glow discharge plasma for enhanced catalytic ozonation of an oxazine dye in aqueous solution. Journal of Molecular Catalysis A Chemical, 2015, 404: 218–226

    Article  Google Scholar 

  96. Moussavi G, Khosravi R. Preparation and characterization of a biochar from pistachio hull biomass and its catalytic potential for ozonation of water recalcitrant contaminants. Bioresource Technology, 2012, 119: 66–71

    Article  CAS  Google Scholar 

  97. Reddy P M, Krushnamurty K, Mahammadunnisa S K, Dayamani A, Subrahmanyam C. Preparation of activated carbons from bio-waste: effect of surface functional groups on methylene blue adsorption. International Journal of Environmental Science and Technology, 2015, 12(4): 1363–1372

    Article  Google Scholar 

  98. Torres-Blancas T, Roa-Morales G, Barrera-Diaz C, Urena-Nunez F, Cruz-Olivares J, Balderas-Hernandez P, Natividad R. Ozonation of Indigo Carmine Enhanced by Fe/Pimenta dioica L. Merrill Particles. International Journal of Photoenergy, 2015, 2015: 1–9

    Article  Google Scholar 

  99. Zhang S, Wang D, Zhang S, Zhang X, Fan P. Ozonation and carbonassisted ozonation of methylene blue as model compound: effect of solution pH. Procedia Environmental Sciences, 2013, 18: 493–502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (SK) is thankful to the financial support provided by Symbiosis International University to carry out this research under Junior Research Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shraddha Khamparia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamparia, S., Jaspal, D.K. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Front. Environ. Sci. Eng. 11, 8 (2017). https://doi.org/10.1007/s11783-017-0899-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0899-5

Keywords

Navigation