Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

De Nugis Groebnerialium 7: Janet, Gerdt, Tamari

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

In this paper we discuss the theory of involutive divisions and bases, generalizing the setting to twisted polynomials over a PIR. We also give an insight about the context of Tamari rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This of course implies that the arithmetics of both \({\mathcal A}\) and R can be simply performed by Buchberger reduction and justifies the notion of being effectively given.

  2. The interested reader can also see [18] for the study of involutive bases over the quotient ring of the commutative polynomial ring over a field modulo an ideal.

  3. The term \(x_1^ix_2^j\) corresponds to (ij); dots are terms in the ideal, diamonds terms in the escalier.

References

  1. Ceria, M., Mora, T.: Buchberger-Weispfenning theory for effective associative rings. J. Symb. Comp. 83, 112–146 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mora, F.: De Nugis Groebnerialium 4: Zacharias, Spears, Moller Proc. ISSAC’15, pp. 191–198, ACM (2015)

  3. Mora, T.: Zacharias representation of effective associative rings. J. Symb. Comp. 99, 147–188 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mora, T.: Solving polynomial equation systems, vol. 4, Cambridge University Press, I (2003), II (2005), III (2015), IV (2016)

  5. Ceria, M., Mora, T.: Toward involutive bases over effective rings. Appl. Algebra Eng. Commun. Comput. 31(5), 359–387 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nguefack, B., Pola, E.: Effective Buchberger-Zacharias-Weispfenning theory of skew polynomial extensions of restricted bilateral coherent rings. J. Symb. Comp. 99, 50–107 (2020)

    Article  MATH  Google Scholar 

  7. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of Polynomial Ideals. Math. Comp. Simul. 45, 543–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pan, L.: On the D-bases of polynomial ideals over principal ideal domains. J. Symb. Comp. 7, 55–69 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Möller, H.M.: On the construction of Gröbner bases using syzygies. J. Symb. Comp. 6, 345–359 (1988)

    Article  MATH  Google Scholar 

  10. Gerdt, V.P., Blinkov, Y.A.: Minimal involutive bases. Math. Comp. Simul. 45, 519–541 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ceria, M., Mora, T.: Buchberger-Zacharias theory of multivariate ore extensions. J. Pure Appl. Algebra 221(12), 2974–3026 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kandri-Rody, A., Weispfenning, W.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comp. 9, 1–26 (1990)

    Article  MATH  Google Scholar 

  13. Kredel H.: Solvable polynomial rings, Dissertation, Passau (1992)

  14. Pesch, M.: Gröbner bases in skew polynomial rings, Dissertation, Passau (1997)

  15. Pesch, M.: Two-sided Gröbner bases in iterated ore extensions, Progress in Computer Science and Applied Logic 15, 225–243 (1991) (Birkhäuser )

  16. Tamari, D: On a certain classification of rings and semigroups, Bull. A.M.S. 54, 153–158 (1948)

  17. Weispfenning, V.: Finite Gröbner bases in non-noetherian skew polynomial rings, Proc. ISSAC’92, 320–332, A.C.M (1992)

  18. Hashemi, A., Orth, M., Seiler, W.M.: Relative Gröbner and involutive bases for ideals in quotient rings. Math. Comput. Sci. 15(3), 453–482 (2021). https://doi.org/10.1007/s11786-021-00513-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Ceria, M.: Combinatorial decompositions for monomial ideals. J. Symb. Comp. 104, 630–652 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Janet, M.: Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure et Appl. 3, 65 (1920)

    MATH  Google Scholar 

  21. Evans, G.A.: Noncommutative involutive bases, PhD thesis, The University of Wales, Bangor (2005). arXiv:math/0602140 [math.RA]

  22. Mora, F.: De Nugis Groebnerialium 1: Eagon, Northcott, Groebner. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Application, pp. 434–447 Cambridge Univ. Press (1998)

  23. Mora, F.: De Nugis Groebnerialium 2: applying Macaulay’s trick in order to easily write a Gröbner basis. Appl. Algebra Eng. Commun. Comput. 13(6), 437–446 (2003)

    Article  MATH  Google Scholar 

  24. Mora, F.: De Nugis Groebnerialium 3: solitaire, Reiß Gröbner. Rend. Del Semin. Mat. 73/2(3–4), 317–321 (2015)

  25. Mora, F.: De Nugis Groebnerialium 5: Noether, Macaulay, Jordan. In: Proceedings of the 24th conference on applications of computer algebra (ACA 2018 Santiago de Compostela)

  26. Ceria, M., Mora, F.: De Nugis Groebnerialium 6: Rump, Ufnarovski, Zacharias. AAECC 33, 725–749 (2022). https://doi.org/10.1007/s00200-022-00583-2

  27. Walter Map.: De nugis curialium; Courtiers’ Trifles, ed. and trans. M. R. James. Revised by C. N.’ L. Brooke and R. A. B. Mynors. (Oxford Medieval Texts.) Clarendon Press, Oxford University Press, New York (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Ceria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memory of Vladimir Gerdt.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceria, M., Mora, F. De Nugis Groebnerialium 7: Janet, Gerdt, Tamari. Math.Comput.Sci. 16, 29 (2022). https://doi.org/10.1007/s11786-022-00549-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11786-022-00549-0

Keywords

Mathematics Subject Classification

Navigation