Abstract
In this paper we discuss the theory of involutive divisions and bases, generalizing the setting to twisted polynomials over a PIR. We also give an insight about the context of Tamari rings.
Similar content being viewed by others
Notes
This of course implies that the arithmetics of both \({\mathcal A}\) and R can be simply performed by Buchberger reduction and justifies the notion of being effectively given.
The interested reader can also see [18] for the study of involutive bases over the quotient ring of the commutative polynomial ring over a field modulo an ideal.
The term \(x_1^ix_2^j\) corresponds to (i, j); dots are terms in the ideal, diamonds terms in the escalier.
References
Ceria, M., Mora, T.: Buchberger-Weispfenning theory for effective associative rings. J. Symb. Comp. 83, 112–146 (2017)
Mora, F.: De Nugis Groebnerialium 4: Zacharias, Spears, Moller Proc. ISSAC’15, pp. 191–198, ACM (2015)
Mora, T.: Zacharias representation of effective associative rings. J. Symb. Comp. 99, 147–188 (2020)
Mora, T.: Solving polynomial equation systems, vol. 4, Cambridge University Press, I (2003), II (2005), III (2015), IV (2016)
Ceria, M., Mora, T.: Toward involutive bases over effective rings. Appl. Algebra Eng. Commun. Comput. 31(5), 359–387 (2020)
Nguefack, B., Pola, E.: Effective Buchberger-Zacharias-Weispfenning theory of skew polynomial extensions of restricted bilateral coherent rings. J. Symb. Comp. 99, 50–107 (2020)
Gerdt, V.P., Blinkov, Y.A.: Involutive bases of Polynomial Ideals. Math. Comp. Simul. 45, 543–560 (1998)
Pan, L.: On the D-bases of polynomial ideals over principal ideal domains. J. Symb. Comp. 7, 55–69 (1988)
Möller, H.M.: On the construction of Gröbner bases using syzygies. J. Symb. Comp. 6, 345–359 (1988)
Gerdt, V.P., Blinkov, Y.A.: Minimal involutive bases. Math. Comp. Simul. 45, 519–541 (1998)
Ceria, M., Mora, T.: Buchberger-Zacharias theory of multivariate ore extensions. J. Pure Appl. Algebra 221(12), 2974–3026 (2017)
Kandri-Rody, A., Weispfenning, W.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comp. 9, 1–26 (1990)
Kredel H.: Solvable polynomial rings, Dissertation, Passau (1992)
Pesch, M.: Gröbner bases in skew polynomial rings, Dissertation, Passau (1997)
Pesch, M.: Two-sided Gröbner bases in iterated ore extensions, Progress in Computer Science and Applied Logic 15, 225–243 (1991) (Birkhäuser )
Tamari, D: On a certain classification of rings and semigroups, Bull. A.M.S. 54, 153–158 (1948)
Weispfenning, V.: Finite Gröbner bases in non-noetherian skew polynomial rings, Proc. ISSAC’92, 320–332, A.C.M (1992)
Hashemi, A., Orth, M., Seiler, W.M.: Relative Gröbner and involutive bases for ideals in quotient rings. Math. Comput. Sci. 15(3), 453–482 (2021). https://doi.org/10.1007/s11786-021-00513-4
Ceria, M.: Combinatorial decompositions for monomial ideals. J. Symb. Comp. 104, 630–652 (2021)
Janet, M.: Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure et Appl. 3, 65 (1920)
Evans, G.A.: Noncommutative involutive bases, PhD thesis, The University of Wales, Bangor (2005). arXiv:math/0602140 [math.RA]
Mora, F.: De Nugis Groebnerialium 1: Eagon, Northcott, Groebner. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Application, pp. 434–447 Cambridge Univ. Press (1998)
Mora, F.: De Nugis Groebnerialium 2: applying Macaulay’s trick in order to easily write a Gröbner basis. Appl. Algebra Eng. Commun. Comput. 13(6), 437–446 (2003)
Mora, F.: De Nugis Groebnerialium 3: solitaire, Reiß Gröbner. Rend. Del Semin. Mat. 73/2(3–4), 317–321 (2015)
Mora, F.: De Nugis Groebnerialium 5: Noether, Macaulay, Jordan. In: Proceedings of the 24th conference on applications of computer algebra (ACA 2018 Santiago de Compostela)
Ceria, M., Mora, F.: De Nugis Groebnerialium 6: Rump, Ufnarovski, Zacharias. AAECC 33, 725–749 (2022). https://doi.org/10.1007/s00200-022-00583-2
Walter Map.: De nugis curialium; Courtiers’ Trifles, ed. and trans. M. R. James. Revised by C. N.’ L. Brooke and R. A. B. Mynors. (Oxford Medieval Texts.) Clarendon Press, Oxford University Press, New York (1983)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
In memory of Vladimir Gerdt.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ceria, M., Mora, F. De Nugis Groebnerialium 7: Janet, Gerdt, Tamari. Math.Comput.Sci. 16, 29 (2022). https://doi.org/10.1007/s11786-022-00549-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11786-022-00549-0