Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Mechanical Geometer

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We present a new method for the systematic and automated finding of theorems holding on a given elementary geometry figure. The process is illustrated by means of the software tool Automated Geometer, developed by the authors on top of GeoGebra, a dynamic geometry system with millions of users at high schools and universities, all over the world, thus conferring our proposal with a potential impact beyond the scientific community context. The Automated Geometer exploits GeoGebra’s recently added new functionalities concerning the automated verification or denial of geometric properties conjectured by the user. We emphasize that the method for mechanically finding a complete list of geometric properties that hold on a user-provided construction, is purely symbolic, thus giving such properties rigorous mathematical certainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in elementary geometry. J. Autom. Reason. 43, 203–236 (2009)

    Article  MathSciNet  Google Scholar 

  2. Pech, P.: Selected Topics in Geometry with Classical Vs. World Scientific. Computer Proving (2007)

  3. Botana, F., Kovács, Z., Recio, T.: Automated geometer, a web-based discovery tool. In: Hongbo Li (ed.), Proceedings of the 12th International Conference on Automated Deduction in Geometry (ADG) (2018) 7–13. Available at http://adg2018.cc4cm.org/ADG2018Proceedings

  4. Botana, F., Kovács, Z., Recio, T.: Towards an Automated Geometer. Lect. Notes Artif. Intell. 11110, 215–220 (2018)

    Google Scholar 

  5. Lenat, D.B.: Automated theory formation in mathematics. Contemp. Math. 29, 287–314 (1984)

    Article  MathSciNet  Google Scholar 

  6. Zeilberger, D.: Plane Geometry: an elementary textbook by Shalosh B. Ekhad XIV (Circa 20150), downloaded from the future by Doron Zeilberger. http://sites.math.rutgers.edu/~zeilberg/PG/gt.html accessed 15/10/2018

  7. de Guzmán, M.: La experiencia de descubrir en geometría. Nivola (2002)

  8. Bagai, R., Shanbhogue, V., Zytkow, J.M., Chou, S.C.: Automatic theorem generation in plane geometry. Lect. Notes Artif. Intell. 689, 415–424 (1993)

    Google Scholar 

  9. Chou, S.C., Gao, X.S., Zhang, J.Z.: A deductive database approach to automated geometry theorem proving and discovering. J. Autom. Reason. 25, 219–246 (2000)

    Article  MathSciNet  Google Scholar 

  10. Chen, X., Song, D., Wang, D.: Automated generation of geometric theorems from images of diagrams. Ann. Math. Artif. Intell. 74, 333–358 (2015)

    Article  MathSciNet  Google Scholar 

  11. Song, D., Wang, D., Chen, X.: Retrieving geometric information from images: the case of hand-drawn diagrams. Data Min. Knowl. Disc. 31, 934 (2017). https://doi.org/10.1007/s10618-017-0494-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., Weitzhofer, S.: Automated theorem proving in GeoGebra: current achievements. J. Autom. Reason. 55, 39–59 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kovács, Z., Recio, T., Vélez, M.P.: Detecting truth, just on parts. Revista Matemática Complutense 32, 451–474 (2019)

    Article  MathSciNet  Google Scholar 

  14. Magajna, Z.: OK Geometry. http://z-maga.si/index?action=article&id=40. Accessed 5 Mar 2018

  15. Recio, T., Vélez, M.P.: Automatic discovery of theorems in elementary geometry. J. Autom. Reas. 23, 63–82 (1999)

    Article  MathSciNet  Google Scholar 

  16. The GeoGebra Team: Reference: GeoGebra Apps API. https://wiki.geogebra.org/en/Reference:GeoGebra_Apps_API. Accessed 5 Oct 2018

  17. Kovács, Z., Parisse, B.: Giac and GeoGebra - Improved Gröbner basis computations. Lect. Notes Comput. Sci. 8942, 126–138 (2015)

    Article  Google Scholar 

  18. Bright, P.: The Web is getting its bytecode: WebAssembly. Condé Nast (2015)

  19. Brianchon, C. J., Poncelet J.-V.: Recherche sur la détermination d’une hyperbole équilatère au moyen de quatre conditions données, Annales de Gergonne 11 (1820-1821) 205-220. http://www.numdam.org/article/AMPA_1820-1821__11__205_0.pdf. Accessed 10 Sept 2018

  20. Gao, H., Goto, Y., Cheng, J.: A systematic methodology for automated theorem finding. Theoret. Comput. Sci. 554, 2–21 (2014)

    Article  MathSciNet  Google Scholar 

  21. Gao, H., Li, J., Cheng, J.: Measuring interestingness of theorems in automated theorem finding by forward reasoning based on strong relevant logic. In: Proceedings 2019 IEEE International Conference on Energy Internet (ICEI), Nanjing, China, 2019, pp. 356–361

  22. Gao, H., Goto, Y., Cheng, J.: A set of metrics for measuring interestingness of theorems in automated theorem finding by forward reasoning: A case study in NBG set theory. Proceedings of the International Conference on Intelligence Science and Big Data Engineering (2015). Part II. Lecture Notes in Computer Science 9243 (2015) 508–517

  23. Botana, F., Kovács, Z., Martínez-Sevilla, A., Recio, T.: Automatically augmented reality with GeoGebra. In: Promodrou, T. (ed.) Augmented Reality in Educational Settings, pp. 347–368. Brill Sense, Leiden (2020)

    Google Scholar 

  24. Su, W., Cai, C., Wu, J.: The accessibility of mathematical formulas for the visually impaired in China. Lect. Notes Artif. Intell. 11110, 237–242 (2018)

    Google Scholar 

  25. Abánades, M., Botana, F., Kovács, Z., Recio, T., Sólyom-Gecse, C.: Development of automatic reasoning tools in GeoGebra. ACM Commun. Comput. Algebra 50, 85–88 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors partially supported by the Grant MTM2017-88796-P from the Spanish MINECO and the ERDF (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Kovács.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botana, F., Kovács, Z. & Recio, T. A Mechanical Geometer. Math.Comput.Sci. 15, 631–641 (2021). https://doi.org/10.1007/s11786-020-00497-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-020-00497-7

Keywords

Mathematics Subject Classification

Navigation