Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Antimagic Labeling of the Lexicographic Product Graph \(K_{m,n}[P_k]\)

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

A labeling f of a graph G is a bijection from its edge set E(G) to the set \(\{1, 2, \ldots , |E(G)|\}\), which is antimagic if the vertex-sums are pairwise distinct, where the vertex-sum at one vertex is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it admits an antimagic labeling f. In this paper, we show that the graph \(K_{m,n}[P_{k}]\), which is the lexicographic product of the complete bipartite graph \(K_{m,n}\) and path \(P_{k}\), is antimagic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartsfield, N., Ringel, G.: Pearls in Graph Theory: A Comprehensive Introduction, pp. 108–110. Academic Press, Boston (1990)

    MATH  Google Scholar 

  2. Alon, N., Kaplan, G., Lev, A., Roditty, Y., Yuster, R.: Dense graphs are antimagic. J. Gr. Theory 47(4), 297–309 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, F., Liang, Y., Pan, Z., Zhu, X.: Antimagic labeling of regular graphs. J. Gr. Theory 82(4), 339–349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bérczi, K., Bernáth, A., Vizer, M.: Regular graphs are antimagic. Electron. J. Combin. 22(3), 3.34 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Kaplan, G., Lev, A., Roditty, Y.: On zero-sum partitions and anti-magic trees. Discrete Math. 309, 2010–2014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liang, Y., Wong, T., Zhu, X.: Anti-magic labeling of trees. Discrete Math. 331, 9–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, T., Hsiao, C.: On ani-magic labeling for graph products. Discrete Math. 308, 3624–3633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Phanalasy, O., Miller, M., Iliopoulos, C.S., et al.: Construction of antimagic labeling for the Cartesian product of regular graphs. Math. Comput. Sci. 5(1), 81–87 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, T., Liu, M., Li, D.: A class of antimagic join graphs. Acta Math. Sin. English Ser. 29(5), 1019–1026 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bača, M., Phanalasy, O., Ryan, J., et al.: Antimagic labelings of join graphs. Math. Comput. Sci. 9(2), 139–143 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daykin, J.W., Iliopoulos, C.S., Miller, M., et al.: Antimagicness of generalized corona and snowflake graphs. Math. Comput. Sci. 9(1), 105–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. DS6 (19th ed) (2016)

  13. Pasles, P.C.: Benjamin Franklins Numbers. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  14. West, D.: Introduction of Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Dong.

Additional information

This work was Supported by the National Natural Science Foundation of China (Grant Nos: 11301381 and 11401430).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Dong, G., Ma, W. et al. Antimagic Labeling of the Lexicographic Product Graph \(K_{m,n}[P_k]\) . Math.Comput.Sci. 12, 77–90 (2018). https://doi.org/10.1007/s11786-017-0327-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-017-0327-z

Keywords

Mathematics Subject Classification

Navigation