Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A fast hybrid DSC-GS-MLE approach for multiple sinusoids estimation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we develop a novel hybrid method for estimation of frequencies of complex multiple sinusoids buried in noise. The algorithm applies two concepts of estimation statistics − data-supported optimization (DSO) and contracting grid search (CGS) to grid-search maximum likelihood estimator (GS-MLE), which is an optimal estimator in terms of accuracy, compared to any other reported method. This hybrid data-supported contracting GS-MLE (DSC-GS-MLE) technique is observed to reduce the time complexity of computationally burdensome GS-MLE. The proposed algorithm has two variants − two-stage variant (DSC-GS-MLE-2) and three-stage variant (DSC-GS-MLE-3). Extensive Monte Carlo simulations show that DSC-GS-MLE-2 retains the optimality of GS-MLE for two and three sinusoids cases. On the other hand, DSC-GS-MLE-3 is suboptimal when compared to GS-MLE but proves to be even faster than DSC-GS-MLE-2 for two sinusoids case, although it does not produce reliable estimates for three sinusoids case. Moreover, they are verified to achieve the Cramér–Rao lower bound (CRLB) as GS-MLE does, even for the closely spaced sinusoids (comparative tables are being reported in Sect. 4 of this manuscript).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Serbes, A., Qaraqe, K.: A fast method for estimating frequencies of multiple sinusoidals. IEEE Signal Process. Lett. 27, 386–390 (2020)

    Article  Google Scholar 

  2. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory, Ch. 1, vol. 1, 1st edn., pp. 1–4. Prentice Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  3. Rao, B.D., Arun, K.S.: Model based processing of signals: a state space approach. Proc. IEEE 80(2), 283–309 (1992)

    Article  Google Scholar 

  4. Yahya Bey, N.: Highly accurate frequency estimation of brief duration signals in noise. SIViP 12(7), 1279–1283 (2018)

    Article  Google Scholar 

  5. Seber, G.A.F., Wild, C.J.: Nonlinear Regression, Ch. 1, pp. 1–19. Wiley, Hoboken, NJ (2003)

  6. Kay, S.M.: Fundamentals of Statistical Signal Processing: Practical Algorithm Development, Ch. 9, vol. 3, 1st edn., pp. 303–349. Pearson Education, Upper Saddle River, NJ (2013)

    Google Scholar 

  7. Kay, S.M.: Modern Spectral Estimation: Theory and Application, Ch. 13, 1st edn., pp. 414–437. Pearson Education, New Delhi (1988)

    Google Scholar 

  8. Stoica, P., Gershman, A.B.: Maximum-likelihood DOA estimation by data-supported grid search. IEEE Signal Process. Lett. 6(10), 273–275 (1999)

    Article  Google Scholar 

  9. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory, Ch. 7, vol. 1, 1st edn., pp. 193–195. Prentice Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  10. Kay, S., Saha, S.: Mean likelihood frequency estimation. IEEE Trans. Signal Process. 48(7), 1937–1946 (2000)

    Article  Google Scholar 

  11. Kumaresan, R.: Estimating the parameters of exponentially damped or undamped sinusoidal signals in noise. Ph.D. thesis, University of Rhode Island, Kingston (1982)

  12. Xu, G., Kailath, T.: Fast subspace decomposition. IEEE Trans. Signal Process. 42(3), 539–551 (1994)

    Article  Google Scholar 

  13. Xin, J., Sano, A.: Computationally efficient subspace-based method for direction-of-arrival estimation without eigendecomposition. IEEE Trans. Signal Process. 52(4), 876–893 (2004)

    Article  MATH  Google Scholar 

  14. Hussain, M. S., Pal, S.: Fast principal component auto-regressive algorithm for estimation of parameters of radar interference signal. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, pp. 1–7 (2019)

  15. Gough, P.T.: A fast spectral estimation algorithm based on the FFT. IEEE Trans. Signal Process. 42(6), 1317–1322 (1994)

    Article  Google Scholar 

  16. Li, J., Stoica, P.: Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans. Signal Process. 44(2), 281–295 (1996)

    Article  Google Scholar 

  17. Hesterman, J.Y., Caucci, L., Kupinski, M.A., Barrett, H.H., Furenlid, L.R.: Maximum-likelihood estimation with a contracting-grid search algorithm. IEEE Trans. Nucl. Sci. 57(3), 1077–1084 (2010)

    Article  Google Scholar 

  18. Stoica, P., Sundin, T.: Transfer function estimation using elemental sets. IEEE Signal Process. Lett. 6(10), 269–272 (1999)

    Article  Google Scholar 

  19. Fuchs, J.-J.: Multiscale identification of real sinusoids in noise. Automatica 30(1), 147–155 (1994)

    Article  MATH  Google Scholar 

  20. B. Gershman, A., Stoica, P.: MODE with extra-roots (MODEX): a new DOA estimation algorithm with an improved threshold performance. In: Proceedings of IEEE ICASSP, Phoenix, AZ, vol. 5, pp. 2833–2836 (1999)

  21. Wu, J., Wang, T., Bao, Z.: Angle estimation for adaptive linear array using PCA-GS-ML estimator. IEEE Trans. Aerosp. Electron. Syst. 49(1), 670–677 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Shahnawaz Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M.S., Pal, S. A fast hybrid DSC-GS-MLE approach for multiple sinusoids estimation. SIViP 17, 165–172 (2023). https://doi.org/10.1007/s11760-022-02218-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02218-y

Keywords

Navigation