Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Restoration of highly salt-and-pepper-noise-corrupted images using novel adaptive trimmed median filter

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The paper presents a novel adaptive trimmed median (ATM) filter to remove salt-and-pepper (SAP) noise of high noise density (ND). The proposed filter computes median of trimmed window of adaptive size containing noise-free pixels (NFP) for ND up medium range while performs new interpolation-based procedure at high ND. Further, for the rare scenarios especially at the boundary where denoising using interpolation is not good enough, the proposed filter denoises the candidate pixel with the help of nearest processed pixels. The proposed ATM filter effectively suppresses SAP noise because denoising mostly utilizes original non-noisy pixels. The proposed algorithm is evaluated for varying ND (10–90%) with different benchmark images (greyscale and coloured) over the existing approaches. The proposed ATM filter on an average provides 1.59 dB and 0.37 dB higher PSNR values on the greyscale and color images, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Astola, J., Kuosmaneen, P.: Fundamentals of Nonlinear Digital Filtering. CRC, Boca Raton (1997)

    Google Scholar 

  2. Hwang, H., Haddad, R.A.: Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4(4), 499–502 (1995)

    Article  Google Scholar 

  3. Zhang, S., Karim, M.A.: A new impulse detector for switching median filters. IEEE Signal Process. Lett. 9(11), 360–363 (2002)

    Article  Google Scholar 

  4. Ng, P.-E., Ma, K.-K.: A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Trans. Image Process. 15(6), 1506–1516 (2006)

    Article  Google Scholar 

  5. Deivalakshmi, S., Palanisamy, P.: Improved tolerance based selective arithmetic mean filter for detection and removal of impulse noise. In: 2010 5th International Conference on Industrial and Information Systems. IEEE, 2010, pp. 309–313

  6. Srinivasan, K., Ebenezer, D.: A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Process. Lett. 14(3), 189–192 (2007)

    Article  Google Scholar 

  7. Ahmed, F., Das, S.: Removal of high-density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean. IEEE Trans. Fuzzy Syst. 22(5), 1352–1358 (2013)

    Article  Google Scholar 

  8. Esakkirajan, S., Veerakumar, T., Subramanyam, A.N., PremChand, C.: Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Process. Lett. 18(5), 287–290 (2011)

    Article  Google Scholar 

  9. Vasanth, K., Kumar, V.J.S.: Decision-based neighborhood-referred unsymmetrical trimmed variants filter for the removal of high-density salt-and-pepper noise in images and videos. SIViP 9(8), 1833–1841 (2015)

    Article  Google Scholar 

  10. Bhadouria, V.S., Ghoshal, D., Siddiqi, A.H.: A new approach for high density saturated impulse noise removal using decision-based coupled window median filter. SIViP 8(1), 71–84 (2014)

    Article  Google Scholar 

  11. Li, Z., Liu, G., Xu, Y., Cheng, Y.: Modified directional weighted filter for removal of salt & pepper noise. Pattern Recogn. Lett. 40, 113–120 (2014)

    Article  Google Scholar 

  12. Zhang, P., Li, F.: A new adaptive weighted mean filter for removing salt-and-pepper noise. IEEE Signal Process. Lett. 21(10), 1280–1283 (2014)

    Article  Google Scholar 

  13. Vijaykumar, V., Mari, G.S., Ebenezer, D.: Fast switching based median-mean filter for high density salt and pepper noise removal. AEU Int. J. Electron. Commun. 68(12), 1145–1155 (2014)

    Article  Google Scholar 

  14. Faragallah, O.S., Ibrahem, H.M.: Adaptive switching weighted median filter framework for suppressing salt-and-pepper noise. AEU Int. J. Electron. Commun. 70(8), 1034–1040 (2016)

    Article  Google Scholar 

  15. Veerakumar, T., Esakkirajan, S., Vennila, I.: Recursive cubic spline interpolation filter approach for the removal of high density salt-and-pepper noise. SIViP 8(1), 159–168 (2014)

    Article  Google Scholar 

  16. Li, Z., Cheng, Y., Tang, K., Xu, Y., Zhang, D.: A salt & pepper noise filter based on local and global image information. Neurocomputing 159, 172–185 (2015)

    Article  Google Scholar 

  17. Dong, Y., Xu, S.: A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Process. Lett. 14(3), 193–196 (2007)

    Article  Google Scholar 

  18. Lu, C.-T., Chou, T.-C.: Denoising of salt-and-pepper noise corrupted image using modified directional-weighted-median filter. Pattern Recogn. Lett. 33(10), 1287–1295 (2012)

    Article  Google Scholar 

  19. Ma, H., Nie, Y.: A two-stage filter for removing salt-and-pepper noise using noise detector based on characteristic difference parameter and adaptive directional mean filter. PLoS ONE 13(10), 1–24 (2018)

  20. Ma, H., Nie, Y.: Mixed noise removal algorithm combining adaptive directional weighted mean filter and improved adaptive anisotropic diffusion model. Math. Probl. Eng. 2018, 1–19 (2018)

  21. Habib, M., Hussain, A., Rasheed, S., Ali, M.: Adaptive fuzzy inference system based directional median filter for impulse noise removal. AEU Int. J. Electr. Commun. 70(5), 689–697 (2016)

    Article  Google Scholar 

  22. Kiani, V., Zohrevand, A.: A fuzzy directional median filter for fixed-value impulse noise removal. In: 7th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE, vol. 2019, pp. 1–4 (2019)

  23. Li, O., Shui, P.-L.: Noise-robust color edge detection using anisotropic morphological directional derivative matrix. Sig. Process. 165, 90–103 (2019)

    Article  Google Scholar 

  24. Xing, Y., Xu, J., Tan, J., Li, D., Zha, W.: Deep cnn for removal of salt and pepper noise. IET Image Proc. 13(9), 1550–1560 (2019)

    Article  Google Scholar 

  25. Fu, B., Zhao, X., Li, Y., Wang, X., Ren, Y.: A convolutional neural networks denoising approach for salt and pepper noise. Multimed. Tools Appl. 78(21), 30 707–30 721 (2019)

    Article  Google Scholar 

  26. Balasubramanian, G., Chilambuchelvan, A., Vijayan, S., Gowrison, G.: Probabilistic decision based filter to remove impulse noise using patch else trimmed median. AEU Int. J. Electr. Commun. 70(4), 471–481 (2016)

    Article  Google Scholar 

  27. Lu, C.-T., Chen, Y.-Y., Wang, L.-L., Chang, C.-F.: Removal of salt-and-pepper noise in corrupted image using three-values-weighted approach with variable-size window. Pattern Recogn. Lett. 80, 188–199 (2016)

    Article  Google Scholar 

  28. Roy, A., Laskar, R.H.: Non-casual linear prediction based adaptive filter for removal of high density impulse noise from color images. AEU Int. J. Electron. Commun. 72, 114–124 (2017)

    Article  Google Scholar 

  29. Erkan, U., ökrem, L.G., Enginoğlu, S.: Different applied median filter in salt and pepper noise. Comput. Electr. Eng. 70, 789–798 (2018)

    Article  Google Scholar 

  30. Erkan, U., ökrem, L.G.: A new method based on pixel density in salt and pepper noise removal. Turk. J. Electr. Eng. Comput. Sci. 26(1), 162–171 (2018)

    Article  Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Garg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, B. Restoration of highly salt-and-pepper-noise-corrupted images using novel adaptive trimmed median filter. SIViP 14, 1555–1563 (2020). https://doi.org/10.1007/s11760-020-01695-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01695-3

Keywords

Navigation