Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multi-trend binary code descriptor: a novel local texture feature descriptor for image retrieval

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

With the development of image vision technology, local descriptors have attracted wide attention in the fields of image retrieval and classification. Even though varieties of methods based on local descriptor have achieved excellent performance, most of them cannot effectively represent the trend of pixels change, and they neglect the mutual occurrence of patterns. Therefore, how to construct local descriptors is of vital importance but challenging. In order to solve this problem, this paper proposes a multi-trend binary code descriptor (MTBCD). MTBCD mimics the visual perception of human to describe images by constructing a set of multi-trend descriptors which are encoded with binary codes. The method exploits the trend of pixels change in four symmetric directions to obtain the texture feature, and extracts the spatial correlation information using co-occurrence matrix. These intermediate features are integrated into one histogram using a new fusion strategy. The proposed method not only captures the global color features, but also reflects the local texture information. Extensive experiments have demonstrated the excellent performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The code and specified parameter files are provided here: http://www.vlfeat.org/matconvnet/pretrained/.

  2. https://github.com/willard-yuan/CNN-for-Image-Retrieval.

References

  1. Yu, L., Feng, L., Chen, C., Qiu, T., Li, L., Wu, J.: A novel multi-feature representation of images for heterogeneous iots. IEEE Access. 4(1), 6204–6215 (2016)

    Article  Google Scholar 

  2. Bozkurt, A., Suhre, A., Cetin, A.E.: Multi-scale directional-filtering-based method for follicular lymphoma grading. SIViP 8(1), 63–70 (2014)

    Article  Google Scholar 

  3. Zhou, W.G., Yang, M., Wang, X.Y., Li, H.Q., Lin, Y.Q., Tian, Q.: Scalable feature matching by dual cascaded scalar quantization for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 159–171 (2016)

    Article  Google Scholar 

  4. Tang, J.H., Li, Z.C., Wang, M., Zhao, R.Z.: Neighborhood discriminant hashing for large-scale image retrieval. IEEE Trans. Image Process. 24(9), 2827–2840 (2015)

    Article  MathSciNet  Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc., Red Hook (2012)

    Google Scholar 

  6. Wu, P., Steven, C.H., Zhao, P., et al.: Online multimodal deep similarity learning with application to image retrieval. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 153–162. ACM (2013)

  7. Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based image retrieval. In: ESANN, pp. 489–494 (2011)

  8. Torralba, A., Fergus, R., Weiss, Y.; Small codes and large image databases for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition CVPR, pp. 1–8. IEEE (2008)

  9. Wan, J., Wang, D., Steven, C.H., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 157–166. ACM (2014)

  10. Krizhevsky, A., Hinton, G.E.: Learning multiple layers of features from tiny images. Technical Report, University of Toronto (2009)

  11. Song, T., Li, H., Meng, F., Wu, Q., Cai, J.: Letrist: locally encoded transform feature histogram for rotation-invariant texture classification. IEEE Trans. Circuits. Syst. Video Technol. (2017). doi:10.1109/TCSVT.2017.2671899

  12. Duan, Y., Lu, J., Feng, J., Zhou, J.: Learning rotation-invariant local binary descriptor. IEEE Trans. Image Process. 26(8), 3636–3651 (2017)

    MathSciNet  Google Scholar 

  13. Liu, G.H., Yang, J.Y., Li, Z.: Content-based image retrieval using computational visual attention model. Pattern Recogn. 48(8), 2554–2566 (2015)

    Article  Google Scholar 

  14. Verma, M., Raman, B.: Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digit. Sig. Proc. 51, 62–72 (2016)

    Article  MathSciNet  Google Scholar 

  15. Zheng, Y., Zhong, G., Liu, J., Cai, X., Dong, J.: Visual texture perception with feature learning models and deep architectures. In: Chinese Conference on Pattern Recognition, pp. 401–410. Springer (2014)

  16. Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 41(6), 765–781 (2011)

    Article  Google Scholar 

  17. Murala, S., Wu, Q., Balasubramanian, R., Maheshwari, R.; Joint histogram between color and local extrema patterns for object tracking. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8663, pp. 1–7 (2013)

  18. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Subrahmanyam, M., Maheshwari, R., Balasubramanian, R.: Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Sig. Process. 92(6), 1467–1479 (2012)

    Article  Google Scholar 

  20. Verma, M., Raman, B., Murala, S.: Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 180(10), 255–269 (2015)

    Article  Google Scholar 

  21. Murala, S., Maheshwari, R., Balasubramanian, R.: Directional local extrema patterns: a new descriptor for content based image retrieval. Int. J. Multimed. Inf. Retr. 1(3), 191–203 (2012)

    Article  MATH  Google Scholar 

  22. Zhao, M., Zhang, H., Sun, J.: A novel image retrieval method based on multi-trend structure descriptor. J. Vis. Commun. Image Represent. 38, 73–81 (2016)

    Article  Google Scholar 

  23. Bala, A., Kaur, T.: Local texton xor patterns: a new feature descriptor for content-based image retrieval. Eng. Sci. Technol. Int. J. 19(1), 101–112 (2016)

    Article  Google Scholar 

  24. Mehta, R., Egiazarian, K.: Dominant rotated local binary patterns (DRLBP) for texture classification. Pattern Recogn. Lett. 71, 16–22 (2016)

    Article  Google Scholar 

  25. Nanni, L., Brahnam, S., Ghidoni, S., Menegatti, E.: Improving the descriptors extracted from the co-occurrence matrix using preprocessing approaches. Expert Syst. Appl. 42(22), 8989–9000 (2015)

  26. de Siqueira, F.R., Schwartz, W.R., Pedrini, H.: Multi-scale gray level co-occurrence matrices for texture description. Neurocomputing 120, 336–345 (2013)

    Article  Google Scholar 

  27. Papushoy, A., Bors, A.G.: Content based image retrieval based on modelling human visual attention. In: Azzopardi, G., Petkov, N. (eds.) Computer analysis of images and patterns. CAIP 2015, Valetta, Malta. Lecture notes in computer science, vol. 9256. Springer, Cham (2015)

  28. Han, J., Wang, D., Shao, L., Qian, X., Cheng, G., Han, J.: Image visual attention computation and application via the learning of object attributes. Mach. Vis. Appl. 25(7), 1671–1683 (2014)

    Article  Google Scholar 

  29. Wang, J.Z., Li, J., Wiederhold, G.: Simplicity: semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

  30. Herve Jegou, M.D., Schmid, C.: Hamming embedding and weak geometry consistency for large scale image search. In: Proceedings of the 10th European conference on Computer Vision, vol. 6709, p. 27 (2008)

  31. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-100). Technical Report CUCS-006-96 (1996)

  32. Wang, H., Feng, L., Liu, Y.: Metric learning with geometric mean for similarities measurement. Soft Comput. 20, 1–11 (2015)

    Google Scholar 

  33. Wang, H., Feng, L., Zhang, J., Liu, Y.: Semantic discriminative metric learning for image similarity measurement. IEEE Trans. Multimed. 18, 1579–1589 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 61173163, 61370200, 61672130, 61602082). The authors would like to thank the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Feng, L., Wang, H. et al. Multi-trend binary code descriptor: a novel local texture feature descriptor for image retrieval. SIViP 12, 247–254 (2018). https://doi.org/10.1007/s11760-017-1152-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1152-1

Keywords

Navigation