Abstract
In this paper a novel and accurate approach is presented to identify varieties of nonlinear Hammerstein models (closed loop and open loop) with the help of an optimization algorithm that combines a recently proposed backtracking search algorithm with wavelet theory-based mutation scheme (BSA-WM). The optimum output MSE associated with each plant along with its statistical information justifies the better precision and accuracy of BSA-WM-based identification approach as compared to the other methods reported in earlier literature.
Similar content being viewed by others
References
Akramizadeh, A., Farjami, A.A., Khaloozadeh, H.: Nonlinear Hammerstein model identification using genetic algorithm. In: IEEE International Conference on Artificial Intelligence Systems, Russia, pp. 351–356 (2002)
Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein–Wiener systems. Automatica 34(3), 333–338 (1998)
Bai, E.W.: Identification of linear systems with hard input nonlinearities of known structure. Automatica 38(5), 853–860 (2002)
Boutayeb, M., Rafaralahy, H., Darouach, M.: A robust and recursive identification method for Hammerstein model. In: Proceedings of the IFAC World Congress, San Francisco, CA, pp. 447–452 (1996)
Brest, J., Greiner, S., Bǒskovi, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)
Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)
Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999)
Eskinat, E., Johnson, S.H., Luyben, W.L.: Use of Hammerstein models in identification of nonlinear systems. AIChE J. 37(2), 255–268 (1991)
Gómez, J.C., Baeyens, E.: Identification of multivariable Hammerstein systems using rational orthogonal bases. In: Proceedings of the 39th IEEE Conference on Decision and Control CDC 2000, Sydney, vol. 3, pp. 2849–2854 (2000)
Gotmare, A., Patidar, R., Nithin, G.V.: Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. Expert Syst. Appl. 42(5), 2538–2546 (2014)
Greblicki, W.: Nonlinearity estimation in Hammerstein systems based on ordered observations. IEEE Trans. Signal Process. 44(5), 1224–1233 (1996)
Hachino, T., Deguchi, K., Takata, S.: Identification of Hammerstein model using radial basis function networks and genetic algorithm. In: Proceedings of 5th Asian IEEE Control Conference, Melboune, vol. 1, pp. 124–129 (2004)
Hatanaka, T., Uosaki, K., Koga, M.: Evolutionary computation approach to block oriented nonlinear model identification. In: 5th Asian Control Conference. Malaysia, vol. 1, pp. 90–96 (2004)
Hunt, K.J., Munih, M., de Donaldson, N.N., Barr, F.M.D.: Investigation of the Hammerstein hypothesis in the modelling of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 45(8), 998–1009 (1998)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)
Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE International Conference on Neural Networks, Australia, pp. 942–1948 (1995)
Laurain, V., Gilson, M., Garnier, H.: Refined instrumental variable methods for identifying Hammerstein models operating in closed loop. In: 48th IEEE CDC-CCC, China, pp. 3614–3619 (2009)
Ling, S.H., Yeung, C.W., Chan, K.Y., Iu, H.H.C., Leung, F.H.F.: A new hybrid particle swarm optimization with wavelet theory based mutation operation. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, pp. 1977–1984 (2007)
Mondal, S., Ghoshal, S.P., Kar, R., Mandal, D.: Differential evolution with wavelet mutation in digital FIR filter design. J. Optim. Theory Appl. 155(1), 315–324 (2012)
Nanda, S.J., Panda, G., Majhi, B.: Improved identification of Hammerstein plants using new CPSO and IPSO algorithms. Expert Syst. Appl. 37(10), 6818–6831 (2010)
Narendra, K., Gallman, P.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Automat. Control 11(3), 546–550 (1966)
Vórós, J.: Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities. IEEE Trans. Automat. Control 44(11), 2145–2149 (1999)
Walpole, R.E., Myer, R.H.: Probability and Statistics for Engineers and Scientists. Macmillan, New York (1978)
Wang, Z., Gu, H.: Parameter identification of bilinear system based on genetic algorithm. In: Bio-Inspired computational intelligence and applications, Springer, pp. 83–91 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pal, P.S., Kar, R., Mandal, D. et al. A hybrid backtracking search algorithm with wavelet mutation-based nonlinear system identification of Hammerstein models. SIViP 11, 929–936 (2017). https://doi.org/10.1007/s11760-016-1041-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-016-1041-z