Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A hybrid backtracking search algorithm with wavelet mutation-based nonlinear system identification of Hammerstein models

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper a novel and accurate approach is presented to identify varieties of nonlinear Hammerstein models (closed loop and open loop) with the help of an optimization algorithm that combines a recently proposed backtracking search algorithm with wavelet theory-based mutation scheme (BSA-WM). The optimum output MSE associated with each plant along with its statistical information justifies the better precision and accuracy of BSA-WM-based identification approach as compared to the other methods reported in earlier literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akramizadeh, A., Farjami, A.A., Khaloozadeh, H.: Nonlinear Hammerstein model identification using genetic algorithm. In: IEEE International Conference on Artificial Intelligence Systems, Russia, pp. 351–356 (2002)

  2. Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein–Wiener systems. Automatica 34(3), 333–338 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, E.W.: Identification of linear systems with hard input nonlinearities of known structure. Automatica 38(5), 853–860 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boutayeb, M., Rafaralahy, H., Darouach, M.: A robust and recursive identification method for Hammerstein model. In: Proceedings of the IFAC World Congress, San Francisco, CA, pp. 447–452 (1996)

  5. Brest, J., Greiner, S., Bǒskovi, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  6. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999)

    Article  Google Scholar 

  8. Eskinat, E., Johnson, S.H., Luyben, W.L.: Use of Hammerstein models in identification of nonlinear systems. AIChE J. 37(2), 255–268 (1991)

    Article  Google Scholar 

  9. Gómez, J.C., Baeyens, E.: Identification of multivariable Hammerstein systems using rational orthogonal bases. In: Proceedings of the 39th IEEE Conference on Decision and Control CDC 2000, Sydney, vol. 3, pp. 2849–2854 (2000)

  10. Gotmare, A., Patidar, R., Nithin, G.V.: Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. Expert Syst. Appl. 42(5), 2538–2546 (2014)

    Article  Google Scholar 

  11. Greblicki, W.: Nonlinearity estimation in Hammerstein systems based on ordered observations. IEEE Trans. Signal Process. 44(5), 1224–1233 (1996)

    Article  Google Scholar 

  12. Hachino, T., Deguchi, K., Takata, S.: Identification of Hammerstein model using radial basis function networks and genetic algorithm. In: Proceedings of 5th Asian IEEE Control Conference, Melboune, vol. 1, pp. 124–129 (2004)

  13. Hatanaka, T., Uosaki, K., Koga, M.: Evolutionary computation approach to block oriented nonlinear model identification. In: 5th Asian Control Conference. Malaysia, vol. 1, pp. 90–96 (2004)

  14. Hunt, K.J., Munih, M., de Donaldson, N.N., Barr, F.M.D.: Investigation of the Hammerstein hypothesis in the modelling of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 45(8), 998–1009 (1998)

    Article  Google Scholar 

  15. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  16. Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE International Conference on Neural Networks, Australia, pp. 942–1948 (1995)

  17. Laurain, V., Gilson, M., Garnier, H.: Refined instrumental variable methods for identifying Hammerstein models operating in closed loop. In: 48th IEEE CDC-CCC, China, pp. 3614–3619 (2009)

  18. Ling, S.H., Yeung, C.W., Chan, K.Y., Iu, H.H.C., Leung, F.H.F.: A new hybrid particle swarm optimization with wavelet theory based mutation operation. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, pp. 1977–1984 (2007)

  19. Mondal, S., Ghoshal, S.P., Kar, R., Mandal, D.: Differential evolution with wavelet mutation in digital FIR filter design. J. Optim. Theory Appl. 155(1), 315–324 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nanda, S.J., Panda, G., Majhi, B.: Improved identification of Hammerstein plants using new CPSO and IPSO algorithms. Expert Syst. Appl. 37(10), 6818–6831 (2010)

    Article  Google Scholar 

  21. Narendra, K., Gallman, P.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Automat. Control 11(3), 546–550 (1966)

    Article  Google Scholar 

  22. Vórós, J.: Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities. IEEE Trans. Automat. Control 44(11), 2145–2149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Walpole, R.E., Myer, R.H.: Probability and Statistics for Engineers and Scientists. Macmillan, New York (1978)

    Google Scholar 

  24. Wang, Z., Gu, H.: Parameter identification of bilinear system based on genetic algorithm. In: Bio-Inspired computational intelligence and applications, Springer, pp. 83–91 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, P.S., Kar, R., Mandal, D. et al. A hybrid backtracking search algorithm with wavelet mutation-based nonlinear system identification of Hammerstein models. SIViP 11, 929–936 (2017). https://doi.org/10.1007/s11760-016-1041-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1041-z

Keywords

Navigation