Abstract
Compressive sensing (CS) is widely considered a promising method for millimeter wave (MMW) and terahertz (THz) imaging, especially in security screening. In many real-life application scenarios, a CS reconstruction algorithm has to be simultaneously robust, noise-tolerant and fast to be of practical use. However, a lot of CS reconstruction algorithms are not designed aiming at such overall performance, preventing them to become applicable in commercial imaging systems. Having investigated some CS algorithms, we find that Hadamard relaxation method is a potential candidate for commercial CS imaging. By using MATLAB, we study Hadamard relaxation method focusing on its under-sampling ratio, tolerance to noise and efficiency. Comparisons with several other CS algorithms are made using the available data in references. The results demonstrate that the overall performance of Hadamard relaxation method is among the best for real-life and real-time applications of MMW and THz imaging.
Similar content being viewed by others
References
Kemp, M.C., Taday, P.F., Cole, B.E., Cluff, J.A., Fitzgerald, A.J., Tribe, W.R.: Security applications of terahertz technology. Proc. SPIE 5070, 44–52 (2003)
Redo-Sanchez, A., Laman, N., Schulkin, B., Tongue, T.: Millimeter, and terahertz waves. J. Infrared 34, 500–518 (2013)
Chen, J., Chen, Y.Q., Zhao, H.W., Bastiaans, G.J., Zhang, X.C.: Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8 THz. Opt. Express 15, 12060–12067 (2007)
Zhong, H., Redo-sanchez, A., Zhang, X.C.: Standoff sensing and imaging of explosive related chemical and bio-chemical materials using THz–TDS. Int. J. High Speed Electron. Syst. 17, 239–249 (2007)
Liu, H.B., Zhong, H., Karpowicz, N., Chen, Y.Q., Zhang, X.C.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514–1527 (2007)
Fukunaga, K., Hosako, I.: Innovative non-invasive analysis techniques for cultural heritage using terahertz technology. C. R. Phys. 11, 519–526 (2010)
Siles, G.A., Riera, J.M., Garcia-del-Pino, P., Romeu, J.: Atmospheric propagation at 100 and 300 GHz: assessment of a method to identify rainy conditions during radiosoundings. Prog. Electromagn. Res. 130, 257–259 (2012)
Zimdars, D., Valdmanis, J.A., White, J.S., Stuk, G., Williamson, S., Winfree, W.P., Madaras, E.I.: Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation. AIP Conf. Proc. 760, 570–577 (2005)
http://news.xinhuanet.com/fortune/2014-05/14/c_126498364.htm
Cooper, K.B., Dengler, R.J., Llombart, N., Talukder, A., Panangadan, A.V., Peay, C.S., Mehdia, I., Siegel, P.H.: Fast, high-resolution terahertz radar imaging at 25 meters. Proc. SPIE 7671, 76710Y (2010)
Sato, H., Sawaya, K., Mizuno, K., Uemura, J., Takeda, M., Takahashi, J., Yamada, K., Morichika, K., Hasegawa, T., Hirai, H., Niikura, H., Matsuzaki, T., Kato, S., Nakada, J.: Passive millimeter-wave imaging for security and safety applications. Proc. SPIE 7671, 76710V (2010)
Heinz, E., May, T., Born, D., Zieger, G., Anders, S., Zakosarenko, V., Schubert, M., Krause, T., Kruger, A., Schulz, M., Meyer, H.G.: Towards high-sensitivity and high-resolution submillimeter-wave video imaging. Proc. SPIE 8022, 802204 (2011)
Gopalsami, N., Liao, S.L., Elmer, T.W., Koehl, E.R., Heifetz, A., Raptis, A.C., Spinoulas, L., Katsaggelos, A.K.: Passive millimeter-wave imaging with compressive sensing. Opt. Eng. 51, 091614 (2012)
Watts, C.M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D.R., Padilla, W.J.: Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014)
Baraniuk, R.G.: Compressive sensing. IEEE Signal Process. Mag. 24, 118–121 (2007)
Wakin, M.B., Laska, J.N., Duarte, M.F., Baron, D., Sarvotham, S., Takhar, D., Kelly, K.F., Baraniuk, R.G.: An architecture for compressive imaging. In: Presented at IEEE International Conference on Image Processing (ICIP 2006), USA, pp. 1273–1276 (2006)
Parasoglou, P., Malioutov, D., Sederman, A.J., Rasburn, J., Powell, H., Gladden, L.F., Blake, A., Johns, M.L.: Quantitative single point imaging with compressed sensing. J. Magn. Reson. 201, 72–80 (2009)
Chan, W.L., Charan, K., Takhar, D., Kelly, K.F., Baraniuk, R.G., Mittleman, D.M.: A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008)
Demirci, S., Ozdemir, C.: Compressed sensing-based imaging of millimeter-wave ISAR data. Microw. Opt. Technol. Lett. 55, 2967–2972 (2013)
Shen, H., Newman, N., Gan, L., Zhong, S.C., Huang, Y., Shen, Y.C.: Compressed terahertz imaging system using a spin disk, In: Presented at 35th International Conference On Infrared, Millimeter, And Terahertz Waves (IRMMW-THz 2010), Italy, (2010)
Mota, J.F.C., Xavier, J.M.F., Aguiar, P.M.Q., Puschel, M.: Distributed basis pursuit. IEEE Trans. Sig. Proc. 60, 1942–1956 (2012)
Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53, 4655–4666 (2007)
Gopalsami, N., Elmer, T.W., Liao, S., Ahern, R., Heifetz, A., Raptis, A.C., Luessi, M., Babacan, D., Katsaggelos, A.K.: Compressive sampling in passive millimeter-wave imaging. Proc. SPIE 8022, 80220I (2011)
Smart, K., Du, J., Li, L., Wang, D., Leslie, K., Ji, F., Li, X.D., Zeng, D.Z.: A practical and portable solids-state electronic terahertz imaging system. Sensors 16, 579 (2016)
Yang, J.R., Lee, W.J., Han, S.T.: Signal-conditioning block of a 1 \(\times \) 200 CMOS detector array for a terahertz real-time imaging system. Sensors 16, 319 (2016)
Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Sig. Proc. 53, 2477–2488 (2005)
Zhang, Z., Rao, D.: Extension of sbl algorithms for the recoveryof block sparse signals with intra-block correlation. IEEE Trans. Sig. Proc. 61, 2009–2015 (2013)
Duc-Son, P., Venkatesh, S.: Efficient algorithms for robust recovery of images from compressed data. IEEE Trans. Image Process. 22, 4724–4737 (2013)
Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007)
Lyu, Q., Lin, Z.C., She, Y.Y., Zhang, C.A.: Comparison of typical l(p) minimization algorithms. Neurocomputing 119, 413–424 (2013)
Li, C.B., Yin, W.T., Jiang, H., Zhang, Y.: An efficient augmented Lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56, 507–530 (2013)
Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)
Fadili M.J., Starck J.L.: Monotone operator splitting for optimization problems in sparse recovery. In: Presented at 2009 16th IEEE International Conference On Image Processing, Egypt, 1–6, pp. 1461–1464 (2009)
Huggins, P.S., Zucker, S.W.: Greedy basis pursuit. IEEE Trans. Sig. Proc. 2007, 3760–3772 (2007)
Bi, X., Chen, X., Li, X., Leng, L.: Energy-based adaptive matching pursuit algorithm for binary sparse signal reconstruction in compressed sensing. Signal Image Video Process. 8, 1039–1048 (2014)
Ramirez, C., Argaez, M.: An \(l_1\) minimization algorithm for non-smooth regularization. Signal Image Video Process. 9, 203–216 (2013)
Acknowledgments
The authors thank Xiaoguang Tian, Pengsheng Wu, Kai Wang, Changlei Wang, Ting Li, Huakun Zhang and Tongshan Yuan for useful discussions on the algorithm and its applicability in real-life imaging systems. We give our sincere appreciations for the hard work of the reviewers and editors.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tu, H., Bu, W., Wang, W. et al. Applicability of Hadamard relaxation method to MMW and THz Imaging with compressive sensing. SIViP 11, 399–406 (2017). https://doi.org/10.1007/s11760-016-0974-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-016-0974-6