Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Cycle spinning (CS) and a’trous algorithms are different implementations of the undecimated wavelet transform (UWT). Both algorithms can be used for UWT and even though the resulting wavelet coefficients are different, they keep a correspondence. This paper describes an analysis of the CS algorithm performed in the z-transform domain, showing the similarities and differences with the a’trous implementation. CS generates more wavelet coefficients than a’trous, but the number of significative and different coefficients is the same in both cases because of the occurrence of a periodic repetition in CS coefficients. Mathematical expressions for the relationship between CS and a’trous coefficients and for CS coefficient periodicities are provided in the z-transform domain. In some wavelet denoising applications, periodicities (present in the coefficients of the CS procedure) can also be found in the performance measure of the processed signals. In particular, in ultrasonic CS denoising applications, periodicities have been appreciated in the signal-to-noise ratio (SNR) of the ultrasonic denoised signals. These periodicities can be used to optimize the number of CS coefficients for an efficient implementation. Two examples showing the periodicities in the SNR are included. A selection of several reduced sets of CS wavelet coefficients has been utilized in the examples, and the SNRs resulting after denoising are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  2. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999)

    MATH  Google Scholar 

  3. Kovacevic, J., Goyal, V.K., Vetterli, M.: Signal Processing Fourier and Wavelet Representations. http://www.fourierandwavelets.org/SPFWR_a3.1_2012.pdf (2012)

  4. Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms. Prentice-Hall, New Jersey (1998)

    Google Scholar 

  5. Kamilov, U., Bostan, E., Unser, M.: Wavelet shrinkage with consistent cycle spinning generalizes total variation denoising. IEEE Signal Process. Lett. 19(4), 187–190 (2012)

    Article  Google Scholar 

  6. Kumar, B.K.S.: Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 7, 1211–1227 (2013)

    Article  Google Scholar 

  7. Rezazadeh, S., Coulombe, S.: A novel discrete wavelet transform framework for full reference image quality assessment. Signal Image Video Process. 7, 559–573 (2013)

    Article  Google Scholar 

  8. Atto, A.M., Pastor, D., Mercier, G.: Wavelet shrinkage: unification of basic thresholding functions and thresholds. Signal Image Video Process. 5, 11–28 (2011)

    Article  Google Scholar 

  9. Yektaii, M., Ahmad, M.O., Bhattacharya, P.: A method for preserving the classifiability of digital images after performing a wavelet-based compression. Signal Image Video Process. 8, 169–180 (2014)

    Article  Google Scholar 

  10. Kanumuri, T., Dewal, M.L., Anand, R.S.: Progressive medical image coding using binary wavelet transforms. Signal Image Video Process. 8, 883–899 (2014)

    Article  Google Scholar 

  11. Kubinyi, M., Kreibich, O., Neuzil, J., Smid, R.: EMAT noise suppression using information fusion in stationary wavelet packets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1027–1036 (2011)

    Article  Google Scholar 

  12. Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 14–26 (1997)

    Article  Google Scholar 

  13. Pardo, E., San Emeterio, J.L., Rodriguez, M.A., Ramos, A.: Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics 44, e1063–e1067 (2006)

    Article  Google Scholar 

  14. Pardo, E., Emeterio, J.L., Rodriguez, M.A., Ramos, A.: Shift invariant wavelet denoising of ultrasonic traces. Acta Acust. United Acust. 94, 685–693 (2008)

    Article  Google Scholar 

  15. Shensa, M.J.: The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992)

    Article  MATH  Google Scholar 

  16. Coifman, R., Donoho, D.: Translation invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics, Lecture Notes in Statistics, pp. 125–150. Springer, Berlin (1995)

    Google Scholar 

  17. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 2, 674–693 (1989)

    Article  Google Scholar 

  18. Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Beylkin, G.: On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal. 6(6), 1716–1740 (1992)

    Article  MathSciNet  Google Scholar 

  20. Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  21. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: Asymptotia? J. R. Stat. Soc. Ser. B 57, 301–369 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Karpur, P., Shankar, P.M., Rose, J.L., Newhouse, V.L.: Split spectrum processing: optimizing the processing parameters using minimization. Ultrasonics 25, 204–208 (1997)

    Article  Google Scholar 

  25. Lazaro, J.C., San Emeterio, J.L., Ramos, A., Fernandez, J.L.: Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics 40, 263–267 (2002)

    Article  Google Scholar 

  26. Donoho, D.L.: De-noising by soft thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R. Stat. Soc. 59, 319–351 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Spanish MCI Project DPI2011-22438 and MEC Project TIN2013-47272-C2-1-R. The translation of this paper was funded by the Universitat Politècnica de València, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Rodriguez-Hernandez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Hernandez, M.A., Emeterio, J.L.S. Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain. SIViP 10, 519–526 (2016). https://doi.org/10.1007/s11760-015-0762-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0762-8

Keywords

Navigation