Abstract
This paper presents a new enhancement technique using the fuzzy set theory for low contrast and nonuniform illumination images. A new parameter called the contrast factor which will provide information on the difference among the gray-level values in the local neighborhood is proposed. The contrast factor is measured by both local and global information to ensure that the fine details of the degraded image are enhanced. This parameter is used to divide the degraded image into bright and dark regions. The enhancement process is applied on gray-scale images wherein the modified Gaussian membership function is employed. The process is performed separately according to the image’s respective regions. The performance of the proposed method is comparable with other state-of-the-art techniques in terms of processing time. The proposed method exhibits the best performance and defeats other methods in terms of preserving brightness and details without amplifying existing noises.
Similar content being viewed by others
References
Hanmandlu, M., Jha, D., Sharma, R.: Color image enhancement by fuzzy intensification. Pattern Recogn. Lett. 24(1–3), 81–87 (2003)
Behrman, R., Zamenhof, R., Blazo, K.: Evaluation of a commercial mammography image-enhancement system. J. Digit. Imaging 2(3), 163–169 (1989). doi:10.1007/bf03168036
Chaira, T., Ray, A.K.: Fuzzy Image Processing and Applications with MATLAB. CRC Press/Taylor& Francis, Boca Raton (2010)
Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. Syst. Man Cybern. IEEE Trans. SMC 3(1), 28–44 (1973)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson/Prentice Hall, Englewood Cliffs, NJ (2008)
Chen, Q., Xu, X., Sun, Q., Xia, D.: A solution to the deficiencies of image enhancement. Signal Process. 90(1), 44–56 (2010). doi:10.1016/j.sigpro.2009.05.015
ZhiYu, C., Abidi, B.R., Page, D.L., Abidi, M.A.: Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement—part II: the variations. Image Process. IEEE Trans. 15(8), 2303–2314 (2006)
ZhiYu, C., Abidi, B.R., Page, D.L., Abidi, M.A.: Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement-part I: the basic method. Image Process. IEEE Trans. 15(8), 2290–2302 (2006)
Chen, H.O., Kong, N.S.P., Ibrahim, H.: Bi-histogram equalization with a plateau limit for digital image enhancement. Consum. Electron. IEEE Trans. 55(4), 2072–2080 (2009)
Chen, H.O., Mat Isa, N.A.: Quadrants dynamic histogram equalization for contrast enhancement. Consum. Electron. IEEE Trans. 56(4), 2552–2559 (2010)
Avanaki, A.: Exact global histogram specification optimized for structural similarity. Opt. Rev. 16(6), 613–621 (2009). doi:10.1007/s10043-009-0119-z
Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. Consum. Electron. IEEE Trans. 53(4), 1752–1758 (2007)
Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. Consum. Electron. IEEE Trans. 56(4), 2475–2480 (2010)
Bhutani, K.R., Battou, A.: An application of fuzzy relations to image enhancement. Pattern Recogn. Lett. 16(9), 901–909 (1995)
Choi, Y., Krishnapuram, R.: A fuzzy-rule-based image enhancement method for medical applications. In: Computer-Based Medical Systems, 1995, Proceedings of the Eighth IEEE Symposium on, 9–10 Jun 1995, pp. 75–80 (1995)
Young, S.C., Krishnapuram, R.: 1A robust approach to image enhancement based on fuzzy logic. Image Process. IEEE Trans. 6(6), 808–825 (1997)
Friedman, M., Schneider, M., Kandel, A.: The use of weighted fuzzy expected value (WFEV) in fuzzy expert systems. Fuzzy Sets Syst. 31(1), 37–45 (1989)
Hanmandlu, M., Tandon, S.N., Mir, A.H.: A new fuzzy logic based image enhancement. Biomed. Sci. Instrum. 33, 590–595 (1997)
Tizhoosh, H.R., Krell, G., Michaelis, B.:λ-enhancement: contrast adaptation based on optimization of image fuzziness. In: Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, 4–9 May 1998, vol. 1542, pp. 1548–1553 (1998)
Vlachos, I., Sergiadis, G., Melin, P., Castillo, O., Aguilar, L., Kacprzyk, J., Pedrycz, W.: The role of entropy in intuitionistic fuzzy contrast enhancement foundations of fuzzy logic and soft computing. In: Lecture Notes in Computer Science, vol. 4529, pp. 104–113. Springer, Berlin (2007)
Vlachos, I.K., Sergiadis, G.D.: Parametric indices of fuzziness for automated image enhancement. Fuzzy Sets Syst. 157(8), 1126–1138 (2006)
Vlachos, I.K., Sergiadis, G.D.: Intuitionistic fuzzy information—applications to pattern recognition. Pattern Recogn. Lett. 28(2), 197–206 (2007)
Cheng, H.D., Chen, J.R.: Automatically determine the membership function based on the maximum entropy principle. Inf. Sci. 96(3–4), 163–182 (1997). doi:10.1016/s0020-0255(96)00141-7
Pal, S.K.: A note on the quantitative measure of image enhancement through fuzziness. Pattern Anal. Mach. Intell. IEEE Trans. PAMI 4(2), 204–208 (1982)
Nieradka, G., Butkiewicz, B., Melin, P., Castillo, O., Aguilar, L., Kacprzyk, J., Pedrycz, W.: A method for automatic membership function estimation based on fuzzy measures foundations of fuzzy logic and soft computing. In: Lecture Notes in Computer Science, vol. 4529, pp. 451–460. Springer, Berlin (2007)
Hanmandlu, M., Verma, O.P., Kumar, N.K., Kulkarni, M.: A novel optimal fuzzy system for color image enhancement using bacterial foraging. Instrum. Meas. IEEE Trans. 58(8), 2867–2879 (2009)
Hanmandlu, M., Jha, D.: An optimal fuzzy system for color image enhancement. Image Process. IEEE Trans. 15(10), 2956–2966 (2006)
Verma, O.P., Kumar, P., Hanmandlu, M., Chhabra, S.: High dynamic range optimal fuzzy color image enhancement using artificial ant colony system. Appl. Soft Comput. 12(1), 394–404 (2012). doi:10.1016/j.asoc.2011.08.033
Wang, L., Wei, L.-Y., Zhou, K., Guo, B., Shum H.Y.: High dynamic range image hallucination’. In: EGSR 2007. European Association for Computer Graphics (2007)
Li, G., Tong, Y., Xiao, X.: Adaptive fuzzy enhancement algorithm of surface image based on local discrimination via grey entropy. Procedia Eng. 15, 1590–1594 (2011)
Cheng, H.D., Xu, H.: A novel fuzzy logic approach to mammogram contrast enhancement. Inf. Sci. 148(1–4), 167–184 (2002)
Vorobel, R., Berehulyak, O., Rutkowski, L., Tadeusiewicz, R., Zadeh, L., Zurada, J.: Gray image contrast enhancement by optimal fuzzy transformation artificial intelligence and soft computing—ICAISC 2006. In: Lecture Notes in Computer Science, vol. 4029, pp. 860–869. Springer, Berlin (2006)
Farbiz, F., Menhaj, M.B., Motamedi, S.A., Hagan, M.T.: A new fuzzy logic filter for image enhancement. Syst. Man Cybern. Part B Cybern. IEEE Trans. 30(1), 110–119 (2000)
Rongjiang, P., Xiangxu, M.: A method of local enhancement based on fuzzy set theory. In: Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, 2000, vol. 1753, pp. 1751–1753 (2000)
Computational Vision Group: Computational Vision Archive (Faces). http://www.vision.caltech.edu/html-files/archive.html (1999)
Piegat, A.: Fuzzy Modeling and Control. Physica-Verlag, Wurzburg (Wien) (2001)
Zhou, W., Bovik, A.C.: A universal image quality index. Signal Process. Lett. IEEE 9(3), 81–84 (2002)
Author information
Authors and Affiliations
Corresponding author
Additional information
This project is supported by Ministry of Science, Technology & Innovation Sciencefund Grant entitle “Development of Computational Intelligent Infertility Detection System based on Sperm Motility Analysis”.
Rights and permissions
About this article
Cite this article
Hasikin, K., Mat Isa, N.A. Adaptive fuzzy contrast factor enhancement technique for low contrast and nonuniform illumination images. SIViP 8, 1591–1603 (2014). https://doi.org/10.1007/s11760-012-0398-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-012-0398-x