Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Adaptive fuzzy contrast factor enhancement technique for low contrast and nonuniform illumination images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents a new enhancement technique using the fuzzy set theory for low contrast and nonuniform illumination images. A new parameter called the contrast factor which will provide information on the difference among the gray-level values in the local neighborhood is proposed. The contrast factor is measured by both local and global information to ensure that the fine details of the degraded image are enhanced. This parameter is used to divide the degraded image into bright and dark regions. The enhancement process is applied on gray-scale images wherein the modified Gaussian membership function is employed. The process is performed separately according to the image’s respective regions. The performance of the proposed method is comparable with other state-of-the-art techniques in terms of processing time. The proposed method exhibits the best performance and defeats other methods in terms of preserving brightness and details without amplifying existing noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hanmandlu, M., Jha, D., Sharma, R.: Color image enhancement by fuzzy intensification. Pattern Recogn. Lett. 24(1–3), 81–87 (2003)

    Article  MATH  Google Scholar 

  2. Behrman, R., Zamenhof, R., Blazo, K.: Evaluation of a commercial mammography image-enhancement system. J. Digit. Imaging 2(3), 163–169 (1989). doi:10.1007/bf03168036

    Article  Google Scholar 

  3. Chaira, T., Ray, A.K.: Fuzzy Image Processing and Applications with MATLAB. CRC Press/Taylor& Francis, Boca Raton (2010)

    MATH  Google Scholar 

  4. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. Syst. Man Cybern. IEEE Trans. SMC 3(1), 28–44 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson/Prentice Hall, Englewood Cliffs, NJ (2008)

    Google Scholar 

  6. Chen, Q., Xu, X., Sun, Q., Xia, D.: A solution to the deficiencies of image enhancement. Signal Process. 90(1), 44–56 (2010). doi:10.1016/j.sigpro.2009.05.015

    Article  MATH  Google Scholar 

  7. ZhiYu, C., Abidi, B.R., Page, D.L., Abidi, M.A.: Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement—part II: the variations. Image Process. IEEE Trans. 15(8), 2303–2314 (2006)

    Article  Google Scholar 

  8. ZhiYu, C., Abidi, B.R., Page, D.L., Abidi, M.A.: Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement-part I: the basic method. Image Process. IEEE Trans. 15(8), 2290–2302 (2006)

    Article  Google Scholar 

  9. Chen, H.O., Kong, N.S.P., Ibrahim, H.: Bi-histogram equalization with a plateau limit for digital image enhancement. Consum. Electron. IEEE Trans. 55(4), 2072–2080 (2009)

    Article  Google Scholar 

  10. Chen, H.O., Mat Isa, N.A.: Quadrants dynamic histogram equalization for contrast enhancement. Consum. Electron. IEEE Trans. 56(4), 2552–2559 (2010)

    Article  Google Scholar 

  11. Avanaki, A.: Exact global histogram specification optimized for structural similarity. Opt. Rev. 16(6), 613–621 (2009). doi:10.1007/s10043-009-0119-z

    Article  Google Scholar 

  12. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. Consum. Electron. IEEE Trans. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  13. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. Consum. Electron. IEEE Trans. 56(4), 2475–2480 (2010)

    Article  Google Scholar 

  14. Bhutani, K.R., Battou, A.: An application of fuzzy relations to image enhancement. Pattern Recogn. Lett. 16(9), 901–909 (1995)

    Article  Google Scholar 

  15. Choi, Y., Krishnapuram, R.: A fuzzy-rule-based image enhancement method for medical applications. In: Computer-Based Medical Systems, 1995, Proceedings of the Eighth IEEE Symposium on, 9–10 Jun 1995, pp. 75–80 (1995)

  16. Young, S.C., Krishnapuram, R.: 1A robust approach to image enhancement based on fuzzy logic. Image Process. IEEE Trans. 6(6), 808–825 (1997)

    Article  Google Scholar 

  17. Friedman, M., Schneider, M., Kandel, A.: The use of weighted fuzzy expected value (WFEV) in fuzzy expert systems. Fuzzy Sets Syst. 31(1), 37–45 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hanmandlu, M., Tandon, S.N., Mir, A.H.: A new fuzzy logic based image enhancement. Biomed. Sci. Instrum. 33, 590–595 (1997)

    Google Scholar 

  19. Tizhoosh, H.R., Krell, G., Michaelis, B.:λ-enhancement: contrast adaptation based on optimization of image fuzziness. In: Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, 4–9 May 1998, vol. 1542, pp. 1548–1553 (1998)

  20. Vlachos, I., Sergiadis, G., Melin, P., Castillo, O., Aguilar, L., Kacprzyk, J., Pedrycz, W.: The role of entropy in intuitionistic fuzzy contrast enhancement foundations of fuzzy logic and soft computing. In: Lecture Notes in Computer Science, vol. 4529, pp. 104–113. Springer, Berlin (2007)

  21. Vlachos, I.K., Sergiadis, G.D.: Parametric indices of fuzziness for automated image enhancement. Fuzzy Sets Syst. 157(8), 1126–1138 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Vlachos, I.K., Sergiadis, G.D.: Intuitionistic fuzzy information—applications to pattern recognition. Pattern Recogn. Lett. 28(2), 197–206 (2007)

    Article  Google Scholar 

  23. Cheng, H.D., Chen, J.R.: Automatically determine the membership function based on the maximum entropy principle. Inf. Sci. 96(3–4), 163–182 (1997). doi:10.1016/s0020-0255(96)00141-7

    Article  Google Scholar 

  24. Pal, S.K.: A note on the quantitative measure of image enhancement through fuzziness. Pattern Anal. Mach. Intell. IEEE Trans. PAMI 4(2), 204–208 (1982)

    Article  MATH  Google Scholar 

  25. Nieradka, G., Butkiewicz, B., Melin, P., Castillo, O., Aguilar, L., Kacprzyk, J., Pedrycz, W.: A method for automatic membership function estimation based on fuzzy measures foundations of fuzzy logic and soft computing. In: Lecture Notes in Computer Science, vol. 4529, pp. 451–460. Springer, Berlin (2007)

  26. Hanmandlu, M., Verma, O.P., Kumar, N.K., Kulkarni, M.: A novel optimal fuzzy system for color image enhancement using bacterial foraging. Instrum. Meas. IEEE Trans. 58(8), 2867–2879 (2009)

    Article  Google Scholar 

  27. Hanmandlu, M., Jha, D.: An optimal fuzzy system for color image enhancement. Image Process. IEEE Trans. 15(10), 2956–2966 (2006)

    Article  Google Scholar 

  28. Verma, O.P., Kumar, P., Hanmandlu, M., Chhabra, S.: High dynamic range optimal fuzzy color image enhancement using artificial ant colony system. Appl. Soft Comput. 12(1), 394–404 (2012). doi:10.1016/j.asoc.2011.08.033

    Article  Google Scholar 

  29. Wang, L., Wei, L.-Y., Zhou, K., Guo, B., Shum H.Y.: High dynamic range image hallucination’. In: EGSR 2007. European Association for Computer Graphics (2007)

  30. Li, G., Tong, Y., Xiao, X.: Adaptive fuzzy enhancement algorithm of surface image based on local discrimination via grey entropy. Procedia Eng. 15, 1590–1594 (2011)

    Article  Google Scholar 

  31. Cheng, H.D., Xu, H.: A novel fuzzy logic approach to mammogram contrast enhancement. Inf. Sci. 148(1–4), 167–184 (2002)

    Article  MATH  Google Scholar 

  32. Vorobel, R., Berehulyak, O., Rutkowski, L., Tadeusiewicz, R., Zadeh, L., Zurada, J.: Gray image contrast enhancement by optimal fuzzy transformation artificial intelligence and soft computing—ICAISC 2006. In: Lecture Notes in Computer Science, vol. 4029, pp. 860–869. Springer, Berlin (2006)

  33. Farbiz, F., Menhaj, M.B., Motamedi, S.A., Hagan, M.T.: A new fuzzy logic filter for image enhancement. Syst. Man Cybern. Part B Cybern. IEEE Trans. 30(1), 110–119 (2000)

    Article  Google Scholar 

  34. Rongjiang, P., Xiangxu, M.: A method of local enhancement based on fuzzy set theory. In: Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, 2000, vol. 1753, pp. 1751–1753 (2000)

  35. Computational Vision Group: Computational Vision Archive (Faces). http://www.vision.caltech.edu/html-files/archive.html (1999)

  36. Piegat, A.: Fuzzy Modeling and Control. Physica-Verlag, Wurzburg (Wien) (2001)

    Book  MATH  Google Scholar 

  37. Zhou, W., Bovik, A.C.: A universal image quality index. Signal Process. Lett. IEEE 9(3), 81–84 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Ashidi Mat Isa.

Additional information

This project is supported by Ministry of Science, Technology & Innovation Sciencefund Grant entitle “Development of Computational Intelligent Infertility Detection System based on Sperm Motility Analysis”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasikin, K., Mat Isa, N.A. Adaptive fuzzy contrast factor enhancement technique for low contrast and nonuniform illumination images. SIViP 8, 1591–1603 (2014). https://doi.org/10.1007/s11760-012-0398-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0398-x

Keywords

Navigation