Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A decision support flexible scheduling system for continuous galvanization lines using genetic algorithm

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

An important, complex problem for logistic optimization in the steel manufacturing plants is obtaining a flexible and adaptive scheduling system for a continuous galvanization line (CGL). The problem tackled in this work involves several constraints and characteristics inspired by real-life manufacturing goals. Given the complexity of the problem, which belongs to the class of NP-hard problems, a genetic algorithm (GA) methodology was developed, combining a penalty procedure defined for constraints with assigned weights for different characteristics of coils. By enlisting the ability and flexibility of GAs, a set of parameters are analyzed to achieve the best results for practical applications. This scheduling solution predicts a CGL sequences with a minimum number of coil transitions, to improve productivity and reduce costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdoun O, Abouchabaka J (2012) A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. arXiv:1203.3097 (arXiv preprint )

  2. Balas E (1989) The prize collecting traveling salesman problem. Networks 19(6):621–636

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen A, Yang GK, Wu ZM (2008) Production scheduling optimization algorithm for the hot rolling processes. Int J Prod Res 46(7):1955–1973

    Article  MATH  Google Scholar 

  4. Chen Y-W, Yong-Zai L, Ge M, Yang G-K, Pan C-C (2012) Development of hybrid evolutionary algorithms for production scheduling of hot strip mill. Comput Oper Res 39(2):339–349

    Article  MATH  Google Scholar 

  5. Cowling P (2003) A flexible decision support system for steel hot rolling mill scheduling. Comput Ind Eng 45(2):307–321

    Article  Google Scholar 

  6. Eiben AE, Smith JE (2015) Evolutionary computing: the origins. In: Introduction to evolutionary computing. Springer, Berlin, pp 13–24

  7. Fernandez S, Alvarez S, Díaz D, Iglesias M, Ena B (2014) Scheduling a galvanizing line by ant colony optimization. Springer, Cham, pp 146–157

    Google Scholar 

  8. Fernández S, Álvarez S, Malatsetxebarria E, Valledor P, Díaz D (2015) Performance comparison of ant colony algorithms for the scheduling of steel production lines. In: Proceedings of the companion publication of the 2015 annual conference on genetic and evolutionary computation, pp 1387–1388. ACM

  9. Fox H, Alul SB, Cohen MW (2017) Scheduling a continues galvanization line using genetic algorithm. In: GECCO ’17: proceedings of the genetic and evolutionary computation conference companion, New York, NY, USA. ACM, pp 277–278

  10. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  11. Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley, Oxford

    MATH  Google Scholar 

  12. Höhn W, König FG, Möhring RH, Lübbecke ME (2011) Integrated sequencing and scheduling in coil coating. Manag Sci 57(4):647–666

    Article  MATH  Google Scholar 

  13. Kapanoglu M, Koc IO (2006) A multi-population parallel genetic algorithm for highly constrained continuous galvanizing line scheduling. Springer, Berlin, pp 28–41

    Google Scholar 

  14. Kumar R, Gopal G, Kumar R (2013) Novel crossover operator for genetic algorithm for permutation problems. Int J Soft Comput Eng 3(2):252–258

    Google Scholar 

  15. Lopez L, Carter MW, Gendreau M (1998) The hot strip mill production scheduling problem: a tabu search approach. Eur J Oper Res 106(2–3):317–335

    Article  MATH  Google Scholar 

  16. Malhotra R, Singh N, Singh Y (2011) Genetic algorithms: concepts, design for optimization of process controllers. Comput Inf Sci 4(2):39

    Google Scholar 

  17. Nguyen S, Mei Y, Zhang M (2017) Genetic programming for production scheduling: a survey with a unified framework. Complex Intell Syst 3:1–26

    Article  Google Scholar 

  18. Orta-Lozano MM, Villarreal B (2015) Achieving competitiveness through setup time reduction. In: Industrial engineering and operations management (IEOM), 2015 international conference on, pp 1–7. IEEE

  19. Shrouf F, Ordieres-Meré J, García-Sánchez A, Ortega-Mier M (2014) Optimizing the production scheduling of a single machine to minimize total energy consumption costs. J Clean Prod 67:197–207

    Article  Google Scholar 

  20. Simon D (2013) Evolutionary optimization algorithms. Wiley, Oxford

    Google Scholar 

  21. Sivanandam SN, Deepa SN (2007) Introduction to genetic algorithms. Springer, Berlin

    MATH  Google Scholar 

  22. Sivaraj R, Ravichandran T (2011) A review of selection methods in genetic algorithm. Int J Eng Sci Technol 1(3):3792–3797

    Google Scholar 

  23. Tang L, Wang X (2008) An iterated local search heuristic for the capacitated prize-collecting travelling salesman problem. J Oper Res Soc 59(5):590–599

    Article  MATH  Google Scholar 

  24. Tang L, Gao C (2009) A modelling and tabu search heuristic for a continuous galvanizing line scheduling problem. ISIJ Int 49(3):375–384

    Article  Google Scholar 

  25. Tang L, Liu J, Rong A, Yang Z (2000) A multiple traveling salesman problem model for hot rolling scheduling in shanghai baoshan iron & steel complex. Eur J Operl Res 124(2):267–282

    Article  MATH  Google Scholar 

  26. Tang L, Wang X (2008) A predictive reactive scheduling method for color-coating production in steel industry. Int J Adv Manuf Technol 35(7):633–645

    Article  Google Scholar 

  27. Tang L, Wang X (2009) Simultaneously scheduling multiple turns for steel color-coating production. Eur J Oper Res 198(3):715–725

    Article  MATH  Google Scholar 

  28. Tang L, Yang Y, Liu J (2010) An efficient optimal solution to the coil sequencing problem in electro-galvanizing line. Comput Oper Res 37(10):1780–1796

    Article  MATH  Google Scholar 

  29. Tanhaei F, Nahavandi N (2013) Algorithm for solving product mix problem in two-constraint resources environment. Int J Adv Manuf Technol 13:64

    Google Scholar 

  30. Verdejo VV, Alarc MAP, Sorl MPL (2009) Scheduling in a continuous galvanizing line. Part special issue: operations research approaches for disaster recovery planning. Comput Oper Res 36(1):280–296

    Article  Google Scholar 

  31. Yadollahpour MR, Bijari M, Kavosh S, Mahnam M (2009) Guided local search algorithm for hot strip mill scheduling problem with considering hot charge rolling. Int J Adv Manuf Technol 45(11):1215–1231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miri Weiss Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss Cohen, M., Foxx, H. & Ben Alul, S. A decision support flexible scheduling system for continuous galvanization lines using genetic algorithm. Prod. Eng. Res. Devel. 13, 43–52 (2019). https://doi.org/10.1007/s11740-018-0856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-018-0856-6

Keywords

Navigation