Abstract
A hot forging process allows to produce parts of excellent quality and technical properties. Nevertheless, it is not possible to forge undercut geometries like piston pin bores, it is usually necessary to manufacture them in subsequent processes. Thus, an undercut-forging process was newly developed. Such a process requires a multidirectional forming tool, which is challenging due to a high clamping force of the tool during the process. With the research results, the requirements to the crucial tool components of heavy springs diminish, allowing using standard spring devices instead of large and expensive custom designed devices. The aim of this study is to analyze the clamping force, its origin, and influencing factors in order to facilitate the tool design. Therefore, in forming simulations the input parameters press velocity, initial temperature, and punch shape were investigated, and their effect on the clamping force was statistically evaluated. The press velocity has the major impact on the resulting clamping force. The initial part temperature and the shape of the punch tool showed minor but still significant effects. This combination of input parameters reduces the load and the stress on the tool, enabling to perform the process on smaller forging presses. Eventually, forging trials validated the results.
Similar content being viewed by others
References
MAHLE GmbH (2011) TopWeld®-Stahlkolben machen Pkw-Dieselmotoren noch sparsamer. Press release. https://www.mahle.com/mahle/de/news-and-press/press-releases/topweld-stahlkolben-machen-pkw-dieselmotoren-noch-sparsamer-423. Accessed 21 Jan 2018
Fu M, Fuh J, Nee A (1999) Generation of optimal parting direction based on undercut features in injection molded parts. IIE Trans 31:947. https://doi.org/10.1023/A:1007671314408
Tu S, Liu F, Li G et al (2017) Fabrication and characterization of high-strength water-soluble composite salt core for zinc alloy die castings. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-1208-y
Hirschvogel M, von Dommelen H (1992) Some applications of cold and warm forging. J Mater Process Technol 35(3–4): 343–356. https://doi.org/10.1016/0924-0136(92)90326-N
Jin J et al (2016) An incremental die forging process for producing helical tubes. Int J Adv Manuf Technol 85:99. https://doi.org/10.1007/s00170-015-7890-8
Ku T-W, Kang B-S (2014) Tool design for inner race cold forging with skew-type cross ball grooves. J Mater Process Technol 214:1482–1502. https://doi.org/10.1016/j.jmatprotec.2014.02.021
Tang L et al (2013) Microstructures and tensile properties of Mg–Gd–Y–Zr alloy during multidirectional forging at 773K. Mater Des 50:587–596. https://doi.org/10.1016/j.matdes.2013.03.054
Zherebtsov SV et al (2004) Production of submicrocrystalline structure in large-scale Ti–6Al– 4V billet by warm severe deformation processing. Scripta Mater 51:1147–1151. https://doi.org/10.1016/j.scriptamat.2004.08.018
Zhang Z et al (2017) Effect of multi-directional forging on the microstructure and mechanical properties of TiBw/TA15 composite with network architecture. Mater Des 134:250–258. https://doi.org/10.1016/j.matdes.2017.08.055
Meyer M, Stonis M, Behrens B-A (2015) Cross wedge rolling and bi-directional forging of preforms for crankshafts. Prod Eng Res Dev 9:61. https://doi.org/10.1007/s11740-014-0581-8
Rasche N, Langner J, Stonis M, Behrens B-A (2018) Experimental investigation of different parameters at a combined cross wedge rolling and multi-directional forging process. Prod Eng Res Devel 12:35. https://doi.org/10.1007/s11740-017-0783-y
Stonis M, Lücke M, Nickel R (2008) Forging of long flat pieces of aluminium with a precise mass distribution operation. TMS annual meeting and exhibition: aluminum alloys: fabrication, characterization and applications, 9–13 March 2008, New Orleans, USA. pp 61–66
Stonis M, Langner J, Blohm T (2015) Induction reheating of preforms and flash reduced forging of crankshafts. European steel technology and application days, 15–19 June 2015, Düsseldorf, conference proceedings, paper no. P672
Langner J, Stonis M, Behrens B-A (2015) Experimental investigation of a variable flash gap regarding material flow and influence of trigger forces. Prod Eng Res Devel 9:289. https://doi.org/10.1007/s11740-015-0611-1
Liewald M et al. (2009) Evaluation of lubricants for bulk metal forming of steel at elevated temperatures using double-cup30 extrusion-test and spike-test. In: Proceedings of 42nd international cold forging group plenary meeting. Shanghai, September 2009, pp. 167–174
Barrau O et al (2003) Analysis of the friction and wear behavior of the hot tool steel for forging. Wear 255:1444–1454. https://doi.org/10.1016/S0043-1648(03)00280-1
Falconnet E et al (2012) Numerical and experimental analyses of punch wear in the blanking of copper alloy thin sheet. Wear 296:598–606. https://doi.org/10.1016/j.wear.2012.07.031
Kannappan A (1969) Wear in forging dies. A review of world experience. Met Form 36:335–342
Acknowledgements
The research published in this article was supported by the IGF project 18162 N of the Forschungsvereinigung Stahlanwendung e.V. (FOSTA) through a resolution of the German Bundestag. The authors would like to thank the German Federation of Industrial Research Associations “Otto von Guericke” e.V. (AiF) for the financial and organisational support of this project.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Ross, J., Langner, J., Stonis, M. et al. Investigation of the required clamping force at multidirectional undercut-forging. Prod. Eng. Res. Devel. 12, 501–515 (2018). https://doi.org/10.1007/s11740-018-0830-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11740-018-0830-3