Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Model based controller design for the compensation of thermally induced deformations

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Modern industries demand the production of smaller and yet more complex parts requiring the machine tool itself to fulfill increasing precision standards. Thermal stability is crucial to satisfy the producer’s and the client’s expectations regarding the product’s quality and reliability. Using high-tech materials with very low coefficients of expansion, integrating water cooling or insulation can improve the thermal stability but is not always possible due to geometric constraints. In this paper, a systematic approach is suggested to compensate the thermally induced deformations by controlling a small number of additional cooling elements. The analytic description of the thermal-mechanical behavior is derived from a Finite Element system that allows the modeling of very complex machine geometries. The Balanced Truncation method is then applied to determine a reduced order model that is used for an optimization based feed-forward controller design. It will be shown that this controller not only significantly reduces the deformations but can also be successfully applied to the original high-order model. As perfect knowledge of both the model and the disturbances can rarely be guaranteed, a feedback controller is finally introduced to improve the compensation of thermally induced deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ANSYS (2013) ANSYS Mechanical APDL Theory Reference Release 15.0. ANSYS, Inc., 15th edn

  2. Antoulas A (2005) Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics (SIAM), Advances in Design and Control

  3. Benner P, Kürschner P, Saak J (2013a) Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numer Algorithms 62(2):225–251

    Article  MathSciNet  MATH  Google Scholar 

  4. Benner P, Saak J (2011) Efficient balancing-based MOR for large-scale second-order systems. Math Comput Model Dyn Syst 17(2):123–143

    Article  MathSciNet  MATH  Google Scholar 

  5. Benner P, Stykel T (2015) Model order reduction for differential-algebraic equations: a survey. Max Planck Institute Magdeburg Preprints

  6. Benner P, Kürschner P, Saak J (2013b) Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Max Planck Institute Magdeburg Preprints

  7. Bryan J (1990) International status of thermal error research (1990). CIRP Ann Manuf Technol 39(2):645–656

    Article  MathSciNet  Google Scholar 

  8. Fraser S, Attia M, Osman M (2004) Control-oriented modeling of thermal deformation of machine tools based on inverse solution of time-variant thermal loads with delayed response. ASME J Manuf Sci Eng 126(2):286–296

    Article  Google Scholar 

  9. Freitas F, Rommes J, Martins N (2008) Gramian-based reduction method applied to large sparse power system descriptor models. Power Syst IEEE Trans 23(3):1258–1270. doi:10.1109/TPWRS.2008.926693

    Article  Google Scholar 

  10. Horejs O, Mares M, Kohout P, Barta P, Hornych J (2010) Compensation of machine tool thermal errors based on transfer functions. MM Sci J 01:163–166

    Article  Google Scholar 

  11. Jorgensen BR, Shin YC (1997) Dynamics of machine tool spindle/bearing systems under thermal growth. J Tribol 119(4):875–882

    Article  Google Scholar 

  12. Koutsovasilis P, Beitelschmidt M (2008) Comparison of model reduction techniques for large mechanical systems. Multibody Syst Dyn 20(2):111–128. doi:10.1007/s11044-008-9116-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Lang N, Saak J, Benner P, Ihlenfeldt S, Nestmann S, SchSdlich K (2015) Towards the identification of heat induction in chip removing processes via an optimal control approach. Prod Eng 9(3):343–349. doi:10.1007/s11740-015-0608-9

    Article  Google Scholar 

  14. Lang N, Saak J, Benner P (2014) Model order reduction for systems with moving loads. at-Automatisierungstechnik 62(7):512–522

  15. Lewis F (2011) Course notes for EE 5321-Optimal Control Systems, 8 Output Feedback and Structured Control. Last accessed 11 Oct 2016

  16. Li JR, White J (2002) Low rank solution of Lyapunov equations. SIAM J Matrix Anal Appl 24(1):260–280. doi:10.1137/S0895479801384937, 10.1137/S0895479801384937

    Article  MathSciNet  MATH  Google Scholar 

  17. Li J, Zhang W, Yang G, Tu S, Chen X (2009) Thermal-error modeling for complex physical systems: the-state-of-arts review. Int J Adv Manuf Technol 42(1–2):168–179

    Article  Google Scholar 

  18. Lohmann B (1999) Zur Störgrößenaufschaltung im Zustandsraum (in German, Engl. On the disturbance feed-forward in state space representation.). Tagungsband GMA Fachausschuss 1:203–215

    Google Scholar 

  19. Longstaff AP, Fletcher S, Myers A (2005) Volumetric compensation for precision manufacture through a standard CNC controller. In: 20th Annual Meeting of the American Society for Precision Engineering

  20. Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Wrz T, Wegener K (2012) Thermal issues in machine tools. CIRP Annals - Manufacturing Technology 61(2):771–791. doi:10.1016/j.cirp.2012.05.008

  21. Mian NS, Fletcher S, Longstaff AP, Myers A (2011) Efficient thermal error prediction in a machine tool using finite element analysis. Measurement Science and Technology 22(8):085,107

  22. Morishima T, van Ostayen R, van Eijk J, Schmidt RHM (2015) Thermal displacement error compensation in temperature domain. Precision Engineering

  23. Neugebauer R, Denkena B, Wegener K (2007) Mechatronic systems for machine tools. CIRP Ann Manuf Technol 56(2):657–686. doi:10.1016/j.cirp.2007.10.007

    Article  Google Scholar 

  24. Neugebauer R, Drossel WG, Ihlenfeldt S, Richter C (2012) Thermal interactions between the process and workpiece. Procedia CIRP 4:63–66. doi:10.1016/j.procir.2012.10.012

    Article  Google Scholar 

  25. Oetinger D, Sawodny O (2015) Using model order reduction for disturbance feed forward control based on transient thermal finite element models. In: Control Applications (CCA), 2015 IEEE Conference on 3rd CIRP Conference on Process Machine Interactions, pp 1486–1491. doi:10.1016/j.procir.2012.10.012

  26. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools a review: Part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284. doi:10.1016/S0890-6955(00)00010-9

    Article  Google Scholar 

  27. Rudnyi EB, Korvink JG (2002) Review: automatic model reduction for transient simulation of MEMS-based devices. Sens Update 11(1):3–33

    Article  Google Scholar 

  28. Saak J (2009) Efficient numerical solution of large scale algebraic matrix equations in PDE control and model order reduction. PhD thesis, Technische Universität Chemnitz

  29. Saak J, Benner P, Kürschner P (2012) A goal-oriented dual LRCF-ADI for balanced truncation. In: MATHMOD 2012-7th Vienna International Conference on Mathematical Modelling, pp 752–757

  30. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675

    Article  Google Scholar 

  31. Taniguchi N (1983) Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann Manuf Technol 32(2):573–582

    Article  Google Scholar 

  32. Thiem X, Großmann K, Mühl A (2015) Structural model-based correction of thermo-elastic machine tool errors. In: Thermo-energetic Design of Machine Tools, Springer, pp 185–197

  33. Thomas B, Soleimani-Mohseni M, Fahlén P (2005) Feed-forward in temperature control of buildings. Energy Build 37(7):755–761. doi:10.1016/j.enbuild.2004.10.002

    Article  Google Scholar 

  34. Weck M, McKeown P, Bonse R, Herbst U (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann Manuf Technol 44(2):589–598. doi:10.1016/S0007-8506(07)60506-X

    Article  Google Scholar 

  35. Wächter A, Biegler LT (2006) On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math Progr 106(1):25–57

    Article  MATH  Google Scholar 

  36. Zhou P, Wang FY, Chen W, Lever P (2001) Optimal construction and control of flexible manipulators: a case study based on LQR output feedback. Mechatronics 11(1):59–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Oetinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oetinger, D., Arnold, E. & Sawodny, O. Model based controller design for the compensation of thermally induced deformations. Prod. Eng. Res. Devel. 11, 601–611 (2017). https://doi.org/10.1007/s11740-017-0750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0750-7

Keywords

Navigation