Abstract
Modern industries demand the production of smaller and yet more complex parts requiring the machine tool itself to fulfill increasing precision standards. Thermal stability is crucial to satisfy the producer’s and the client’s expectations regarding the product’s quality and reliability. Using high-tech materials with very low coefficients of expansion, integrating water cooling or insulation can improve the thermal stability but is not always possible due to geometric constraints. In this paper, a systematic approach is suggested to compensate the thermally induced deformations by controlling a small number of additional cooling elements. The analytic description of the thermal-mechanical behavior is derived from a Finite Element system that allows the modeling of very complex machine geometries. The Balanced Truncation method is then applied to determine a reduced order model that is used for an optimization based feed-forward controller design. It will be shown that this controller not only significantly reduces the deformations but can also be successfully applied to the original high-order model. As perfect knowledge of both the model and the disturbances can rarely be guaranteed, a feedback controller is finally introduced to improve the compensation of thermally induced deformations.
Similar content being viewed by others
References
ANSYS (2013) ANSYS Mechanical APDL Theory Reference Release 15.0. ANSYS, Inc., 15th edn
Antoulas A (2005) Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics (SIAM), Advances in Design and Control
Benner P, Kürschner P, Saak J (2013a) Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numer Algorithms 62(2):225–251
Benner P, Saak J (2011) Efficient balancing-based MOR for large-scale second-order systems. Math Comput Model Dyn Syst 17(2):123–143
Benner P, Stykel T (2015) Model order reduction for differential-algebraic equations: a survey. Max Planck Institute Magdeburg Preprints
Benner P, Kürschner P, Saak J (2013b) Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Max Planck Institute Magdeburg Preprints
Bryan J (1990) International status of thermal error research (1990). CIRP Ann Manuf Technol 39(2):645–656
Fraser S, Attia M, Osman M (2004) Control-oriented modeling of thermal deformation of machine tools based on inverse solution of time-variant thermal loads with delayed response. ASME J Manuf Sci Eng 126(2):286–296
Freitas F, Rommes J, Martins N (2008) Gramian-based reduction method applied to large sparse power system descriptor models. Power Syst IEEE Trans 23(3):1258–1270. doi:10.1109/TPWRS.2008.926693
Horejs O, Mares M, Kohout P, Barta P, Hornych J (2010) Compensation of machine tool thermal errors based on transfer functions. MM Sci J 01:163–166
Jorgensen BR, Shin YC (1997) Dynamics of machine tool spindle/bearing systems under thermal growth. J Tribol 119(4):875–882
Koutsovasilis P, Beitelschmidt M (2008) Comparison of model reduction techniques for large mechanical systems. Multibody Syst Dyn 20(2):111–128. doi:10.1007/s11044-008-9116-4
Lang N, Saak J, Benner P, Ihlenfeldt S, Nestmann S, SchSdlich K (2015) Towards the identification of heat induction in chip removing processes via an optimal control approach. Prod Eng 9(3):343–349. doi:10.1007/s11740-015-0608-9
Lang N, Saak J, Benner P (2014) Model order reduction for systems with moving loads. at-Automatisierungstechnik 62(7):512–522
Lewis F (2011) Course notes for EE 5321-Optimal Control Systems, 8 Output Feedback and Structured Control. Last accessed 11 Oct 2016
Li JR, White J (2002) Low rank solution of Lyapunov equations. SIAM J Matrix Anal Appl 24(1):260–280. doi:10.1137/S0895479801384937, 10.1137/S0895479801384937
Li J, Zhang W, Yang G, Tu S, Chen X (2009) Thermal-error modeling for complex physical systems: the-state-of-arts review. Int J Adv Manuf Technol 42(1–2):168–179
Lohmann B (1999) Zur Störgrößenaufschaltung im Zustandsraum (in German, Engl. On the disturbance feed-forward in state space representation.). Tagungsband GMA Fachausschuss 1:203–215
Longstaff AP, Fletcher S, Myers A (2005) Volumetric compensation for precision manufacture through a standard CNC controller. In: 20th Annual Meeting of the American Society for Precision Engineering
Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Wrz T, Wegener K (2012) Thermal issues in machine tools. CIRP Annals - Manufacturing Technology 61(2):771–791. doi:10.1016/j.cirp.2012.05.008
Mian NS, Fletcher S, Longstaff AP, Myers A (2011) Efficient thermal error prediction in a machine tool using finite element analysis. Measurement Science and Technology 22(8):085,107
Morishima T, van Ostayen R, van Eijk J, Schmidt RHM (2015) Thermal displacement error compensation in temperature domain. Precision Engineering
Neugebauer R, Denkena B, Wegener K (2007) Mechatronic systems for machine tools. CIRP Ann Manuf Technol 56(2):657–686. doi:10.1016/j.cirp.2007.10.007
Neugebauer R, Drossel WG, Ihlenfeldt S, Richter C (2012) Thermal interactions between the process and workpiece. Procedia CIRP 4:63–66. doi:10.1016/j.procir.2012.10.012
Oetinger D, Sawodny O (2015) Using model order reduction for disturbance feed forward control based on transient thermal finite element models. In: Control Applications (CCA), 2015 IEEE Conference on 3rd CIRP Conference on Process Machine Interactions, pp 1486–1491. doi:10.1016/j.procir.2012.10.012
Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools a review: Part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284. doi:10.1016/S0890-6955(00)00010-9
Rudnyi EB, Korvink JG (2002) Review: automatic model reduction for transient simulation of MEMS-based devices. Sens Update 11(1):3–33
Saak J (2009) Efficient numerical solution of large scale algebraic matrix equations in PDE control and model order reduction. PhD thesis, Technische Universität Chemnitz
Saak J, Benner P, Kürschner P (2012) A goal-oriented dual LRCF-ADI for balanced truncation. In: MATHMOD 2012-7th Vienna International Conference on Mathematical Modelling, pp 752–757
Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675
Taniguchi N (1983) Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann Manuf Technol 32(2):573–582
Thiem X, Großmann K, Mühl A (2015) Structural model-based correction of thermo-elastic machine tool errors. In: Thermo-energetic Design of Machine Tools, Springer, pp 185–197
Thomas B, Soleimani-Mohseni M, Fahlén P (2005) Feed-forward in temperature control of buildings. Energy Build 37(7):755–761. doi:10.1016/j.enbuild.2004.10.002
Weck M, McKeown P, Bonse R, Herbst U (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann Manuf Technol 44(2):589–598. doi:10.1016/S0007-8506(07)60506-X
Wächter A, Biegler LT (2006) On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math Progr 106(1):25–57
Zhou P, Wang FY, Chen W, Lever P (2001) Optimal construction and control of flexible manipulators: a case study based on LQR output feedback. Mechatronics 11(1):59–77
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Oetinger, D., Arnold, E. & Sawodny, O. Model based controller design for the compensation of thermally induced deformations. Prod. Eng. Res. Devel. 11, 601–611 (2017). https://doi.org/10.1007/s11740-017-0750-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11740-017-0750-7