Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Strategies for numerical simulation of linear friction welding of metals: a review

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Linear friction welding (LFW) is a solid-state joining process used to weld non-axisymmetric components. Material joining is obtained through the reciprocating motion of two specimens undergoing an axial force. During this process, the heat source is determined by the frictional work transformed into heat. This results in a local softening of the material and plays a key role in the onset of the bonding conditions. In this paper, a critical analysis of the different approaches used to simulate the LFW processes is provided. The focus of the paper is the comparison of different modeling strategies and the most relevant outputs available, i.e. temperature, strain and stress distribution, material flow, axial shortening and residual stress. Major issues arising due to the complexity of the process are discussed, highlighting strengths and weaknesses of each approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Vairis A, Frost M (1998) High frequency linear friction welding of a titanium alloy. Wear 217 (1):117–131. doi:10.1016/S0043-1648(98)00145-8

    Article  Google Scholar 

  2. Fratini L, Buffa G, Campanella D, La Spisa D (2012) Investigations on the linear friction welding process through numerical simulations and experiments. Mater Des 40:285–291. doi:10.1016/j.matdes.2012.03.058

    Article  Google Scholar 

  3. Vairis A, Frost, M. (1998) High frequency linear friction welding of a titanium alloy. Wear 217 (1):117–131

    Article  Google Scholar 

  4. Vairis A, Frost M (1999) On the extrusion stage of linear friction welding of Ti 6a1 4 V. Mater Sci Eng A 271(1–2):477–484

    Article  Google Scholar 

  5. Bhamji I, Preuss M, Threadgill PL, Moat RJ, Addison AC, Peel MJ (2010) Linear friction welding of AISI 316L stainless steel. Mater Sci Eng 528 (2):680–690. doi:10.1016/j.msea.2010.09.043

    Article  Google Scholar 

  6. Li WY, Ma TJ, Yang SQ, Xu QZ, Zhang Y, Li JL, Liao HL (2008) Effect of friction time on flash shape and axial shortening of linear friction welded 45 steel. Mater Lett 62(2):293–296. doi:10.1016/j.matlet.2007.05.037

    Article  Google Scholar 

  7. Dalgaard E, Wanjara P, Gholipour J, Cao X, Jonas JJ (2012) Linear friction welding of a near-β titanium alloy. Acta Mater 60(2):770–780. doi:10.1016/j.actamat.2011.04.037

    Article  Google Scholar 

  8. Romero J, Attallah MM, Preuss M, Karadge M, Bray SE (2009) Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4 V linear friction welds. Acta Mater 57:5582–5592

    Article  Google Scholar 

  9. Vairis A, Frost M (2006) Design and commissioning of a friction welding machine. Mater Manuf Process 21 (8):766–773. doi:10.1080/03602550600728356

    Article  Google Scholar 

  10. Wanjara P, Jahazi M (2005) Linear friction welding of Ti-6Al-4V: processing, microstructure, and mechanical-property inter-relationships. Metall Mater Trans A 36 (8):2149–2164

    Article  Google Scholar 

  11. Fratini L, Buffa, G., Cammalleri, M., Campanella, D. (2013) On the linear friction welding process of aluminum alloys: experimental insights through process monitoring. CIRP Anna - Manuf Technol 62 (1):295–298

    Article  Google Scholar 

  12. Cao X, Jahazi M (2009) Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy. Mater Des 30(6):2033–2042. doi:10.1016/j.matdes.2008.08.040

    Article  Google Scholar 

  13. Mary C, Jahazi M (2008) Multi-scale analysis of IN-718 microstructure evolution during linear friction welding. Adv Eng Mater 10 (6):573–578. doi:10.1002/adem.200700361

    Article  Google Scholar 

  14. Taban E, Gould JE, Lippold JC (2010) Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: properties and microstructural characterization. Mater Des 31(5):2305–2311. doi:10.1016/j.matdes.2009.12.010

    Article  Google Scholar 

  15. Wanjara P, Dalgaard E, Trigo G, Mandache C, Comeau G, Jonas JJ (2011) Linear friction welding of Al-Cu: Part 1—process evaluation. Can Metall Q 50(4):350–359. doi:10.1179/000844311X13112418194644

    Article  Google Scholar 

  16. Zhang C-C, Huang, J-H, Zhang, T-C, Ji, Y-J (2011) The analysis in linear friction welding joint interface behavior of dissimilar titanium alloy. J Mater Eng 1(11):80–84

    Google Scholar 

  17. Vairis A, Frost M (2000) Modelling the linear friction welding of titanium blocks. Mater Sci Eng A 292(1):8–17. doi:10.1016/S0921-5093(00)01036-4

    Article  Google Scholar 

  18. Maalekian M, Kozeschnik E, Brantner HP, Cerjak H (2008) Comparative analysis of heat generation in friction welding of steel bars. Acta Mater 56(12):2843–2855. doi:10.1016/j.actamat.2008.02.016

    Article  Google Scholar 

  19. Maalekian M (2007) Friction welding—critical assessment of literature. Sci Technol Weld Joining 12 (8):738–759. doi:10.1179/174329307X249333

    Article  Google Scholar 

  20. Turner R, Schroeder F, Ward RM, Brooks JW (2014) The importance of materials data and modelling parameters in an FE simulation of linear friction welding. Adv Mater Sci Eng. doi:10.1155/2014/521937

    Google Scholar 

  21. Li W, Guo J, Ma T, Vairis A (2014) Numerical modeling of linear friction welding: a literature review. China Weld (English Edition) 23 (4):1–7

    Google Scholar 

  22. Li WY, Ma T, Li J (2010) Numerical simulation of linear friction welding of titanium alloy: effects of processing parameters. Mater Des 31(3):1497–1507. doi:10.1016/j.matdes.2009.08.023

    Article  MathSciNet  Google Scholar 

  23. Li WY, Shi SX, Wang FF, Ma TJ, Li JL, Gao DL, Vairis A (2013) Int J Therm Sci 67:192–199. doi:10.1016/j.ijthermalsci.2012.12.004

    Article  Google Scholar 

  24. Zhao P, Fu L, Zhong D (2014) Numerical simulation of transient temperature and axial deformation during linear friction welding between TC11 and TC17 titanium alloys. Comput Mater Sci 92:325–333. doi:10.1016/j.commatsci.2014.05.062

    Article  Google Scholar 

  25. Maio L, Franco F, Squillace A, Lecce L (2016) A simplified approach to numerical simulation of LFW process of Ti6Al4V alloy: investigation on friction and temperature. Int J Adv Manuf Tech. doi:10.1007/s00170-016-8447-1

    Google Scholar 

  26. Ceretti E, Fratini L, Giardini C, La Spisa D (2010) Numerical modelling of the linear friction welding process. Int J Mater Form 3:1015–1018. doi:10.1007/s12289-010-0942-6

    Google Scholar 

  27. Song X, Xie M, Hofmann F, Jun TS, Connolley T, Reinhard C, Atwood RC, Connor L, Drakopoulos M, Harding S, Korsunsky AM (2013) Residual stresses in linear friction welding of aluminium alloys. Mater Des 50:360–369. doi:10.1016/j.matdes.2013.03.051

    Article  Google Scholar 

  28. Song X, Baimpas N, Harding S, Korsunsky AM (2011) Process modelling of Linear Friction Welding (LFW) between Aa2124/Sic P composite and unreinforced alloy. In: Proceedings of the 4th International conference on computational methods for coupled problems in science and engineering, COUPLED PROBLEMS 2011, pp 1379–1387

  29. Bikmeyev AT, Gazizov RK, Yamileva AM, Vairis A, Zheleznov FO (2015) On the visualization of joint formation during linear friction welding. J Eng Sci Technol Rev 8:69–72

    Google Scholar 

  30. Turner R, Gebelin JC, Ward RM, Reed RC (2011) Linear friction welding of Ti-6Al-4V: modelling and validation. Acta Mater 59(10):3792–3803. doi:10.1016/j.actamat.2011.02.028

    Article  Google Scholar 

  31. Turner R, Ward RM, March R, Reed RC (2012) The magnitude and origin of residual stress in Ti-6Al-4V linear friction welds: an investigation by validated numerical modeling. Metall Mater Trans B 43 (1):186–197. doi:10.1007/s11663-011-9563-9

    Article  Google Scholar 

  32. Schroeder F, Ward RM, Turner RP, Walpole AR, Attallah MM, Gebelin JC, Reed RC (2015) Validation of a model of linear friction welding of Ti6Al4V by considering welds of different sizes. Metall Mater Trans B 46 (5):2326–2331. doi:10.1007/s11663-015-0396-9

    Article  Google Scholar 

  33. McAndrew AR, Colegrove PA, Addison AC, Flipo BCD, Russell MJ (2015) Modelling the influence of the process inputs on the removal of surface contaminants from Ti-6Al-4V linear friction welds. Mater Des 66:183–195. doi:10.1016/j.matdes.2014.10.058

    Article  Google Scholar 

  34. McAndrew AR, Colegrove PA, Addison AC, Flipo BCD, Russell MJ (2014) Energy and force analysis of Ti-6Al-4V linear friction welds for computational modeling input and validation data. Metall Mater Trans A 45 (13):6118–6128. doi:10.1007/s11661-014-2575-8

    Article  Google Scholar 

  35. McAndrew AR, Colegrove PA, Addison AC, Flipo BCD, Russell MJ, Lee LA (2015) Modelling of the workpiece geometry effects on Ti-6Al-4V linear friction welds. Mater Des 87:1087–1099. doi:10.1016/j.matdes.2015.09.080

    Article  Google Scholar 

  36. Tao J, Zhang T, Liu P, Li J, Mang Y (2008) Numerical computation of a linear friction welding process. Mater Sci Forum, vol 575–578 PART 2

  37. Ji S, Wang Y, Liu J, Meng X, Tao J, Zhang T (2016) Effects of welding parameters on material flow behavior during linear friction welding of Ti6Al4V titanium alloy by numerical investigation. Int J Adv Manuf Tech 82(5–8):927–938. doi:10.1007/s00170-015-7408-4

    Article  Google Scholar 

  38. Li W, Wang F, Shi S, Ma T (2014) Numerical simulation of linear friction welding based on ABAQUS environment: challenges and perspectives. J Mater Eng Perform 23(2):384–390. doi:10.1007/s11665-013-0776-8

    Article  Google Scholar 

  39. Li W, Wang F, Shi S, Ma T, Li J, Vairis A (2014) 3D finite element analysis of the effect of process parameters on linear friction welding of mild steel. J Mater Eng Perform. doi:10.1007/s11665-014-1197-z

    Google Scholar 

  40. Buffa G, Cammalleri M, Campanella D, Fratini L (2015) Shear coefficient determination in linear friction welding of aluminum alloys. Mater Des 82:238–246. doi:10.1016/j.matdes.2015.05.070

    Article  Google Scholar 

  41. Buffa G, Campanella D, Pellegrino S, Fratini L (2016) Weld quality prediction in linear friction welding of AA6082-T6 through an integrated numerical tool. J Mater Process Technol 231:389–396. doi:10.1016/j.jmatprotec.2016.01.012

    Article  Google Scholar 

  42. Sorina-Müller J, Rettenmayr M, Schneefeld D, Roder O, Fried W (2010) FEM simulation of the linear friction welding of titanium alloys. Comp Mater Sci 48 (4):749–758. doi:10.1016/j.commatsci.2010.03.026

    Article  Google Scholar 

  43. Wu X (2012) Finite element simulation of linear friction welding. Adv Mater Res. doi:10.4028/www.scientific.net/AMR.411.126

    Google Scholar 

  44. Song C, Lin T, He P, Jiao Z, Tao J, Ji Y (2014) Molecular dynamics simulation of linear friction welding between dissimilar Ti-based alloys. Comp Mater Sci 83:35–38. doi:10.1016/j.commatsci.2013.11.013

    Article  Google Scholar 

  45. Nikiforov R, Medvedev A, Tarasenko E, Vairis A (2015) Numerical simulation of residual stresses in linear friction welded joints. J Eng Sci Technol Rev 8:49–53

    Google Scholar 

  46. Wen GD, Ma TJ, Li WY, Li X, Li JL, Chen T, Wen R, Niu J, Guo HZ (2012) Mathematical modelling of joint temperature during linear friction welding of dissimilar Ti-6.5Al-3.5Mo-1.5Zr-0.3Si and Ti-5Al-2Sn-2Zr-4Mo-4Cr alloys. J Eng Sci Technol Rev 5(3):35–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Buffa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buffa, G., Fratini, L. Strategies for numerical simulation of linear friction welding of metals: a review. Prod. Eng. Res. Devel. 11, 221–235 (2017). https://doi.org/10.1007/s11740-017-0726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0726-7

Keywords

Navigation