Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Modeling of the dynamic behavior of machine tools: influences of damping, friction, control and motion

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In the process of designing a machine tool virtual models are required to predict the dynamic behavior and optimize the machine tool performance. For this purpose, the different influencing factors mass, stiffness and damping properties as well as friction forces, feed drive controls and movements have to be considered in the simulation. However, usually no suitable models and modeling approaches are available for all of these various influencing factors. In this paper, models are provided for the mentioned influencing factors. Subsequently, a modeling approach is proposed, which allows to predict the dynamic behavior with high accuracy. By using this modeling approach, the influencing factors are investigated and evaluated with regard to their effects on the vibration behavior of a machine tool. The nonlinear friction forces and the linear dissipation sources have the greatest impact on the damping behavior. In comparison, the impact of the feed drive control on the vibration behavior is low. Movements can greatly influence the vibration behavior. Their effects are mainly restricted to the axial modes of the feed drives. At these modes, the damping ratios can vary under motion by up to ±35% compared to a standstill. With these insights and the proposed models and modeling approaches new possibilities arise to predict and optimize the dynamic behavior of a machine tool and thus to enhance the machine tool performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Supported by the German Reasearch Foundation (DFG).

References

  1. Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Ann Manuf Technol 54(2):115–138

    Article  Google Scholar 

  2. Cook RD, Malkus D, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. Wiley, Hoboken

    Google Scholar 

  3. Okwudire CE, Altintas Y (2009) Hybrid modeling of ball screw drives with coupled axial, torsional and lateral dynamics. ASME J Mech Des 131:071002

  4. Fey M (2015) Identifikation geeigneter parametrierter Daempfungsmodelle fuer Komponenten einer Linearachse. Ergebnisse aus der Produktionstechnik, Apprimus, Aachen

  5. Niehues K (2015) Identifikation linearer Daempfungsmodelle fuer Werkzeugmaschinenstrukturen. Forschungsberichte IWB, Herbert Utz, Munich

    Google Scholar 

  6. MSCSoftware Corporation (2011) MD Nastran 2011 & MSC Nastran 2011 dynamic analysis user’s guide. Santa Ana

  7. Rebelein C, Zaeh MF (2016) Friction in feed drives of machine tools: investigation, modeling and validation. Prod Eng Res Devel. doi:10.1007/s11740-4-016-0678-3

  8. Hoffmann F (2008) Optimierung der dynamischen Bahngenauigkeit von Werkzeugmaschinen mit der Mehrkrpersimulation. Ergebnisse aus der Produktionstechnik, Apprimus, Aachen

    Google Scholar 

  9. Ewins DJ (1984) Modal testing: theory and practice. Research Studies Press Ltd, Taunton

    Google Scholar 

  10. MSCSoftware Corporation (2004) Advanced dynamic analysis user’s guide. Santa Ana

  11. Swevers J, Al-Bender F, Gansemann CG, Prajogo T (2000) An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans Autom Control 45(4):675–686

    Article  MathSciNet  MATH  Google Scholar 

  12. Lampaert V, Swevers J, Al-Bender F (2002) Modification of the Leuven integrated friction model structure. IEEE Trans Autom Control 47(4):683–687

    Article  MathSciNet  Google Scholar 

  13. Kunc M (2013) Identifikation und Modellierung von nichtlinearen Daempfungseffekten in Vorschubachsen fuer Werkzeugmaschinen. No. 11/2013 in Ergebnisse aus der Produktionstechnik, Apprimus, Aachen

  14. Schwarz S (2015) Prognosefaehigkeit dynamischer Simulationen von Werkzeugmaschinenstrukturen. Forschungsberichte IWB, Herbert Utz, Munich

    Google Scholar 

  15. Johnson CD, Kienholz DA, Rogers LC (1981) Finite Element Prediction of Damping in Beams with Constrained Viscoelastic Layers. In: The Shock and vibration information center: the shock and vibration bulletin part 1, 51st symposium on shock and vibration. San Diego, Oct 21–23, 1980. Naval Research Laboratory, Washington, D. C. 1981:71–81

  16. Gawronski WK (2004) Advanced structural dynamics and active control of structures. Springer, New York

    Book  MATH  Google Scholar 

  17. Craig RR, Bampton MCCC (1968) Coupling of structures for dynamic analyses. AIAA J 6(7):1313–1319

    Article  MATH  Google Scholar 

  18. Maia NMM, Silva JMM (1997) Theoretical and experimental modal analysis. Research Studies Press Ltd, Taunton

    Google Scholar 

  19. Altintas Y, Verl A, Brecher C, Uriarte L, Pritschow G (2011) Machine tool feed drives. CIRP Ann Manuf Technol 60(2):779–796

    Article  Google Scholar 

  20. Niehues K, Schwarz S, Zaeh MF (2012) Reliable material damping ratio determination in machine tool structures. Prod Eng Res Devel 6:475–484

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) within the research unit FOR-1087 “Damping effects in Machine Tools”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rebelein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebelein, C., Vlacil, J. & Zaeh, M.F. Modeling of the dynamic behavior of machine tools: influences of damping, friction, control and motion. Prod. Eng. Res. Devel. 11, 61–74 (2017). https://doi.org/10.1007/s11740-016-0704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-016-0704-5

Keywords

Navigation