Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Experimental and numerical analysis of tribological effective surfaces for forming tools in Sheet-Bulk Metal Forming

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Sheet-Bulk Metal Forming (SBMF) allows the manufacture of complex parts with integrated functional form elements, such as teeth and thickened areas. Therefore, bulk forming operations are applied to sheets with initial thicknesses of 2 or 3 mm. The design and functionality of the tools are as important as the process itself. Therefore, the working group “Tools” of the Transregional Collaborative Research Centre on Sheet-Bulk Metal Forming (CRC/TR73) focuses on the optimization of the technical tool design. By varying topographies or applying tailored coatings, the friction behavior is changed to achieve a better form filling and to reduce process forces during the forming operations. In this paper, the potential of different tailored surfaces is validated by simulations and experimental studies. The tribological behavior of 14 surface microstructures is evaluated using a half-space model in order to select structures suitable for application. Those were characterized experimentally by ring-compression and pin-extrusion tests. The determined friction factors were used in a forming simulation to predict the form filling of small cavities in a flow forming operation. Furthermore, special attention is paid to the utilization of the anisotropic behavior of specific structures. The results were validated by an incremental gear forming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Merklein M, Allwood JM, Behrens B-A, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya E, Weckenmann A (2012) Bulk forming of sheet metal. CIRP Ann 61(2):725–745

    Article  Google Scholar 

  2. Gröbel D, Koch J, Vierzigmann U, Engel U, Merklein M (2014) Investigations and approaches on material flow of non-uniform arranged cavities in sheet bulk metal forming processes. Procedia Eng 81:401–406

    Article  Google Scholar 

  3. Löffler M, Gröbel D, Engel U, Andreas K, Merklein M (2015) Analysis of effectiveness of locally adapted tribological conditions for improving product quality in Sheet-Bulk Metal Forming. Appl Mech Mater 794:81–88

    Article  Google Scholar 

  4. Hetzner H, Koch J, Tremmel S, Wartack S, Merklein M (2011) Improved Sheet Bulk Metal Forming Processes by Local Adjustment of Tribological Properties. J. Manufacturing Science and Engineering 133(6):61011-1-11

    Article  Google Scholar 

  5. Sieczkarek P, Kwiatkowski L, Tekkaya AE, Krebs E, Kersting P, Tillmann W, Herper J (2013) Innovative tools to improve incremental bulk forming processes. Key Eng Mater 554–557:1490–1497

    Article  Google Scholar 

  6. Sieczkarek P, Kwiatkowski L, Tekkaya AE et al (2012) Improved tool surfaces for incremental bulk forming processes of sheet metals. Key Eng Mater 504–506:975–980

    Article  Google Scholar 

  7. Freiburg D, Biermann D, Hense R, Stangier D, Tillmann W (2015) Influence of surface modifications on friction, using high-feed milling and wear resistant PVD-coating for sheet-metal forming tools. Key Eng Mater 639:275–282

    Article  Google Scholar 

  8. Suresh R, Basavarajappa S, Gaitonde VN, Samuel G, Davim JP (2013) State-of-the-art research in machinability of hardened steels. Proc Inst Mech Eng Part B J Eng Manuf 227(2):191–209

    Article  Google Scholar 

  9. Hogmark S, Jacobsen S, Wänstrand O (1999) A new universal test for tribological evaluation. In: Proceedings of the 21st IRG-OECD Meeting, Amsterdam, Netherlands

  10. Hetzner H, Schaufler J, Tremmel S, Durst K, Wartzack S (2012) Failure mechanisms of a tungsten-modified hydrogenated amorphous carbon coating in load-scanning tests. Surf Coat Technol 212:46–54

    Article  Google Scholar 

  11. Ahn S-K, Kwon S-H, Kim K-H (2011) Effect of carbon on microstructure of CrAlCxN1-x coatings by hybrid coating system. Trans Nonferrous Met Soc China 21:78–82

    Article  Google Scholar 

  12. Sobis T, Engel U, Geiger M (1994) A theoretical study of wear simulation in metal forming processes. J Mater Process Technol 34:233–240

    Article  Google Scholar 

  13. Pfestorf M, Engel U, Geiger M (1998) 3D-surface parameters and their application on deterministic textured metal sheets. Int J Mach Tools Manuf 38:607–614

    Article  Google Scholar 

  14. Leach R (2013) Characterisation of areal surface texture. Springer, Berlin

    Book  Google Scholar 

  15. Kalker JJ (1990) Three-dimensional elastic bodies in rolling contact, Vol 2. Springer, Netherlands

    MATH  Google Scholar 

  16. Hauer F, Willner K (2013) Development of a Friction law respecting plastic surface smoothing. Key Eng Mater 554:1471–1477

    Article  Google Scholar 

  17. Hauer F (2014) Die elasto-plastische Einglättung rauer Oberflächen und ihr Einfluss auf die Reibung in der Umformtechnik. Erlangen, Germany, Friedrich-Alexander-University Erlangen-Nürnberg, Diss. (Schriftenreihe Technische Mechanik, ISSN 2190-023X)

  18. Engel U, Neudecker T, Popp U (2000) 3D-Oberflächenanalyse - Methoden, Kenngrößen, Anwendungen. Materialwiss Werkstofftech 31:747–753

    Article  Google Scholar 

  19. Hense R, Kersting P, Vierzigmann U, Löffler M, Biermann D, Merklein M, Wels C (2014) High-feed milling of tailored surfaces for sheet-bulk metal forming tools. Prod Eng Res Devel. doi:10.1007/s11740-014-0597-0

    Google Scholar 

  20. Male AT, Cockcroft MG (1964) A method for the determination of the coefficient of friction of metals under condition of bulk plastic deformation. J Inst Metal 93:38–46

    Google Scholar 

  21. Rajnesh T, Nath SK, Ray S (2002) Effect of martensite content on friction and oxidative wear behavior of 0.42 Pct carbon dual-phase steel. Metall Mater Trans A 33(11):3479–3488

    Article  Google Scholar 

  22. Hetzner H, Zhao R, Tremmel S, Wartzack S (2013) Tribological adjustment of tungsten-modified hydrogenated amorphous carbon coatings by adaption of the deposition parameters. In: Bouzakis MK-D, Bobzin K, Denkena B, Merklein M (eds) 10th international conference THE “A” Coatings. Shaker, Aachen, pp 39–49

    Google Scholar 

  23. Vierzigmann U, Merklein M, Engel U (2010) tailored surfaces in sheet-bulk metal forming. In: Felder E, Montmitonnet P (ed) Proceedings of 4th international conference on tribology in manufacturing processes (ICTMP), Transvalor–Presses des MINES, pp 541–550

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) within the scope of the Transregional Collaborative Research Centre on Sheet-Bulk Metal Forming (CRC/TR73, Workgroup “Tools”, Subprojects A2, A4, B2, B3, B4, B5, B6, and C1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Krebs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kersting, P., Gröbel, D., Merklein, M. et al. Experimental and numerical analysis of tribological effective surfaces for forming tools in Sheet-Bulk Metal Forming. Prod. Eng. Res. Devel. 10, 37–50 (2016). https://doi.org/10.1007/s11740-015-0651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-015-0651-6

Keywords

Navigation