Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Analysis of residual stresses and wear mechanism of HF-CVD diamond coated cemented carbide tools

  • Tooling
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Chemical vapour deposition (CVD) diamond coated tools have demonstrated their potential for the machining of difficult to machine materials in the last 10 years. The lack of adequate coating adhesion in many cases remains an issue and often leads to spontaneous coating delamination and sudden tool failure however. The work described in this paper was undertaken with the aim of understanding the influence of residual stresses and coating quality on the coating adhesion during the machining of aluminium alloys. Residual stresses were determined using Raman spectroscopy as well as X-ray diffraction analysis and a comparison of the results obtained using the two methods is given. Raman spectroscopy was also implemented to analyse the coating quality. Furthermore, the failure mechanism of CVD diamond coated tools was studied using cross-sections prepared by focused ion beam sputtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. König J (2009) Herstellung und Einsatz CVD-diamantbeschichteter Bohrgewindefräser. Berichte aus dem Produktionstechnischen Zentrum Berlin. Hrsg.: Uhlmann, E. Dissertation, Technische Universität Berlin. Stuttgart: Fraunhohfer IRB

  2. Nistor LC, Van Landuyt J, Ralchenko VG, Obraztsova ED, Smolin AA (1997) Nanocrystalline diamond films: transmission electron microscopy and Raman spectroscopy characterization. Diam Relat Mater 6:159–168

    Article  Google Scholar 

  3. Grögler T, Zeiler E, Hörner A, Rosiwal SM, Singer RF (1998) Microwave-plasma CVD of diamond coatings onto titanium and titanium alloys. Surf Coat Technol 98:1079–1091

    Article  Google Scholar 

  4.  Klaus M (2009) Röntgendiffraktometrische Ermittlung tiefenabhängiger Eigenspannungs-verteilungen in Dünnschichtsystemen mit komplexem Aufbau. Dissertation TU Berlin

  5. Anastassakis E, Liarokapis E (1987) Polycrystalline Si under strain: elastic and lattice-dynamical considerations. J Appl Phys 62:3346–3352

    Article  Google Scholar 

  6. Anastassakis E, Liarokapi E (1999) Strain characterization of polycrystalline diamond and silicon systems. J Appl Phys 86:249–258

    Article  Google Scholar 

  7. Grimsditch MH, Anastassakis E, Cardona M (1987) Effect of uniaxial stress on the zone-center optical phonon of diamond. Phys Rev B 18:901–904

    Article  Google Scholar 

  8. Meixner M, Klaus M, Genzel Ch (2013) Sin2Ψ-based residual stress Gradient analysis by energy-dispersive synchrotron diffraction constrained by small gauge volume I. Theoretical concept. J Appl Crystallogr 46:610–618

    Article  Google Scholar 

  9. Meixner M, Klaus M, Genzel Ch (2013) Sin2Ψ-based residual stress gradient analysis by energy-dispersive synchrotron diffraction constrained by small gauge volume II. experimental implementation. J Appl Crystallogr 46:619–627

    Article  Google Scholar 

  10. Genzel Ch, Denks IA, Gibmeier J, Klaus M, Wagener G (2007) The material science synchrotron beamline EDDI for energy-dispersive Diffraction analysis. Nucl Instrum Methods Phys Res A 578:23–33

    Article  Google Scholar 

  11. Genzel Ch, Stock C, Reimers W (2004) Application of energy-dispersive diffraction to the analysis of multiaxial residual stress Fields in the intermediate zone between surface and volume. Mater Sci Eng A372:28–43

    Article  Google Scholar 

  12. Eigenmann B, Scholtes B, Macherauch E (1990) Eine Mehrwellenlängenmethode zur röntgenographischen Analyse oberflächennaher Eigenspannungszustände in Keramiken. Mater-Wiss Werkstofftechn 21:257–265

    Article  Google Scholar 

  13. Meixner M, Klaus M, Genzel Ch, Reimers W (2013) Residual stress analysis of diamond coated WC-Co cutting Tools: separation of film and substrate information by grazing X-ray diffraction. J Appl Crystallogr 46(5):1323–1330

    Article  Google Scholar 

  14. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396

    Article  MATH  MathSciNet  Google Scholar 

  15. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z Phys 151:504–518

    Article  Google Scholar 

  16. Landolt H, Börnstein R (1979) Numerical data and functional relationships in science and technology, new series, group III, vol 11. Springer, Berlin

    Google Scholar 

  17. Eigenmann B, Macherauch E (1996) Röntgenographische Untersuchung von Spannungszuständen in Werkstoffen, Teil III. Mater-Wiss Werkstofftechn 27:426–437

    Article  Google Scholar 

  18. Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32:389–395

    Article  Google Scholar 

  19. Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale. Chem Geol 261:217–229

    Article  Google Scholar 

  20. Uhlmann E, Reimers W, Sammler F, Meixner M (2012) Werkzeugauslegung zur Bearbeitung von Leichtbauwerkstoffen. Wt Werkstattstechnik online 6:416–424

    Google Scholar 

  21. Amirhaghi S, Reehala HS, Wood RJK, Wheeler DW (2001) Diamond coatings on tungsten carbide and their erosive wear properties. Surf Coat Technol 135:126–138

    Article  Google Scholar 

  22. Pan FM, Chen JL, Chou T, Lin TS, Chang L (1994) Interface studies of the diamond film grown on the cobalt cemented tungsten carbide. J Vac Sci Technol A 12:1519–1522

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for the financial support of this project and the companies KOMET RHOBEST GmbH, EXTRAMET AG and KLENK GmbH & Co. KG for the supply of tools and diamond coatings. We kindly acknowledge the financial support of the FIB by the EFRE-project “Nano-Werkbank”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sammler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhlmann, E., Sammler, F., Meixner, M. et al. Analysis of residual stresses and wear mechanism of HF-CVD diamond coated cemented carbide tools. Prod. Eng. Res. Devel. 9, 99–107 (2015). https://doi.org/10.1007/s11740-014-0580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0580-9

Keywords

Navigation