Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Three-dimensional relative localization and synchronized movement with wireless ranging

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Relative localization is a key capability for autonomous robot swarms, and it is a substantial challenge, especially for small flying robots, as they are extremely restricted in terms of sensors and processing while other robots may be located anywhere around them in three-dimensional space. In this article, we generalize wireless ranging-based relative localization to three dimensions. In particular, we show that robots can localize others in three dimensions by ranging to each other and only exchanging body velocities and yaw rates. We perform a nonlinear observability analysis, investigating the observability of relative locations for different cases. Furthermore, we show both in simulation and with real-world experiments that the proposed method can be used for successfully achieving various swarm behaviours. In order to demonstrate the method’s generality, we demonstrate it both on tiny quadrotors and lightweight flapping wing robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://www.bitcraze.io/

  2. https://flapper-drones.com/wp/

  3. https://github.com/tudelft/crazyflie-firmware/tree/cf_swarm3d

  4. https://github.com/tudelft/crazyflie-firmware/tree/flapper_swarm3d

  5. https://github.com/tudelft/crazyflie-suite

  6. https://doi.org/10.4121/17372348

  7. https://www.youtube.com/playlist?list=PL_KSX9GOn2P-dzSwBvYYRZuKOiYvx0pIS

References

  • Arrichiello, F., Antonelli, G., Aguiar, A. P., & Pascoal, A. (2013). An observability metric for underwater vehicle localization using range measurements. Sensors, 13(12), 16191–16215. https://doi.org/10.3390/s131216191.

    Article  Google Scholar 

  • Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E. (2006). Consistency of the EKF-slam algorithm. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3562–3568. https://doi.org/10.1109/IROS.2006.281644

  • Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41. https://doi.org/10.1007/s11721-012-0075-2.

    Article  Google Scholar 

  • Carrio, A., Bavle, H., & Campoy, P. (2018). Attitude estimation using horizon detection in thermal images. International Journal of Micro Air Vehicles, 10(4), 352–361. https://doi.org/10.1177/1756829318804761.

    Article  Google Scholar 

  • Coppola, M., McGuire, K. N., Scheper, K. Y. W., & de Croon, G. C. H. E. (2018). On-board communication-based relative localization for collision avoidance in micro air vehicle teams. Autonomous Robots, 42(8), 1787–1805. https://doi.org/10.1007/s10514-018-9760-3.

    Article  Google Scholar 

  • Coppola, M., McGuire, K. N., De Wagter, C., & de Croon, G. C. H. E. (2020). A survey on swarming with micro air vehicles: Fundamental challenges and constraints. Frontiers in Robotics and AI, 7, 18. https://doi.org/10.3389/frobt.2020.00018.

    Article  Google Scholar 

  • Cossette, C. C., Shalaby, M., Saussié, D., Forbes, J. R., & Le Ny, J. (2021). Relative position estimation between two UWB devices with IMUS. IEEE Robotics and Automation Letters, 6(3), 4313–4320. https://doi.org/10.1109/LRA.2021.3067640.

    Article  Google Scholar 

  • de Croon, G. (2020). Flapping wing drones show off their skills. Science Robotics, 5(44), 0233. https://doi.org/10.1126/scirobotics.abd0233.

    Article  Google Scholar 

  • Eren, T., Goldenberg, O.K., Whiteley, W., Yang, Y.R., Morse, A.S., Anderson, B.D.O., Belhumeur, P.N. (2004). Rigidity, computation, and randomization in network localization. In: IEEE INFOCOM 2004, vol. 4, pp. 2673–26844. https://doi.org/10.1109/INFCOM.2004.1354686

  • Faigl, J., Krajník, T., Chudoba, J., Přeučil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: 2013 IEEE International Conference on Robotics and Automation, pp. 993–998 (2013). https://doi.org/10.1109/ICRA.2013.6630694

  • Guo, K., Qiu, Z., Meng, W., Xie, L., & Teo, R. (2017). Ultra-wideband based cooperative relative localization algorithm and experiments for multiple unmanned aerial vehicles in gps denied environments. International Journal of Micro Air Vehicles, 9(3), 169–186. https://doi.org/10.1177/1756829317695564.

    Article  Google Scholar 

  • Heintzman, L., & Williams, R. K. (2020). Nonlinear observability of unicycle multi-robot teams subject to nonuniform environmental disturbances. Autonomous Robots, 44(7), 1149–1166.

    Article  Google Scholar 

  • Hermann, R., & Krener, A. (1977). Nonlinear controllability and observability. IEEE Transactions on Automatic Control, 22(5), 728–740. https://doi.org/10.1109/TAC.1977.1101601.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, B., Anderson, B. D. O., & Hmam, H. (2020). 3-d relative localization of mobile systems using distance-only measurements via semidefinite optimization. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 1903–1916. https://doi.org/10.1109/TAES.2019.2935926.

    Article  Google Scholar 

  • Jordan, S., Moore, J., Hovet, S., Box, J., Perry, J., Kirsche, K., et al. (2018). State-of-the-art technologies for UAV inspections. IET Radar, Sonar and Navigation, 12(2), 151–164. https://doi.org/10.1049/iet-rsn.2017.0251.

    Article  Google Scholar 

  • Krener, A.J., & Ide, K. (2009). Measures of unobservability. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, pp. 6401–6406. https://doi.org/10.1109/CDC.2009.5400067

  • Kwon, J., & Hailes, S. (2014). Scheduling uavs to bridge communications in delay-tolerant networks using real-time scheduling analysis techniques. In: 2014 IEEE/SICE International Symposium on System Integration, pp. 363–369. https://doi.org/10.1109/SII.2014.7028065

  • Ledergerber, A., Hamer, M., D’Andrea, R. (2015) A robot self-localization system using one-way ultra-wideband communication. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3131–3137. https://doi.org/10.1109/IROS.2015.7353810

  • Li, S., Coppola, M., Wagter, C.D., & de Croon, G.C.H.E. (2021). An autonomous swarm of micro flying robots with range-based relative localization. https://arxiv.org/abs/2003.05853

  • Maes, W. H., & Steppe, K. (2019). Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends in Plant Science, 24(2), 152–164. https://doi.org/10.1016/j.tplants.2018.11.007.

    Article  Google Scholar 

  • Mahony, R., Hamel, T., & Pflimlin, J.-M. (2008). Nonlinear Complementary Filters on the Special Orthogonal Group. IEEE Transactions on Automatic Control, 53(5), 1203–1218. https://doi.org/10.1109/TAC.2008.923738.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen, T.H., Xie, L. (2022). Relative transformation estimation based on fusion of odometry and UWB ranging data.

  • Preiss, J.A., Hönig, W., Sukhatme, G.S., Ayanian, N. (2017). Crazyswarm : A large nano-quadcopter swarm. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3299–3304. https://doi.org/10.1109/ICRA.2017.7989376

  • Roberts, J. F., Stirling, T., Zufferey, J.-C., & Floreano, D. (2012). 3-D relative positioning sensor for indoor flying robots. Autonomous Robots, 33(1), 5–20. https://doi.org/10.1007/s10514-012-9277-0.

    Article  Google Scholar 

  • Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. In E. Şahin & W. M. Spears (Eds.), Swarm Robotics (pp. 10–20). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Shalaby, M., Cossette, C. C., Forbes, J. R., & Le Ny, J. (2021). Relative position estimation in multi-agent systems using attitude-coupled range measurements. IEEE Robotics and Automation Letters, 6(3), 4955–4961. https://doi.org/10.1109/LRA.2021.3067253.

    Article  Google Scholar 

  • Shang, Y., & Ruml, W. (2004). Improved mds-based localization. In: IEEE INFOCOM 2004, vol. 4, pp. 2640–26514. https://doi.org/10.1109/INFCOM.2004.1354683

  • Simon, D. (2006). Optimal State Estimation. Hoboken NJ: John Wiley & Sons.

    Book  Google Scholar 

  • Tijs, E., de Croon, G., Wind, J., Remes, B., De Wagter, C., de Bree, H., & Ruijsink, R. (2010). Hear-and-avoid for micro air vehicles. In: Proceedings of the International Micro Air Vehicle Conference and Competitions (IMAV), Braunschweig, Germany, vol. 69

  • Trawny, N., Zhou, X.S., Zhou, K.X., & Roumeliotis, S.I. (2007). 3d relative pose estimation from distance-only measurements. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1071–1078. https://doi.org/10.1109/IROS.2007.4399075

  • Trawny, N., Zhou, X. S., Zhou, K., & Roumeliotis, S. I. (2010). Interrobot transformations in 3-d. IEEE Transactions on Robotics, 26(2), 226–243. https://doi.org/10.1109/TRO.2010.2042539.

    Article  Google Scholar 

  • Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A. E., & Vicsek, T. (2018). Optimized flocking of autonomous drones in confined environments. Science Robotics, 3(20), 1–14. https://doi.org/10.1126/scirobotics.aat3536.

    Article  Google Scholar 

  • Vedder, B., Eriksson, H., Skarin, D., Vinter, J., Jonsson, M.: Towards collision avoidance for commodity hardware quadcopters with ultrasound localization. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 193–203. https://doi.org/10.1109/ICUAS.2015.7152291

  • Wei, S., Dan, G., & Chen, H. (2016). Altitude data fusion Utilising differential measurement and complementary filter. IET Science, Measurement and Technology, 10(8), 874–879. https://doi.org/10.1049/iet-smt.2016.0118.

    Article  Google Scholar 

  • Williams, R.K., & Sukhatme, G.S. (2015). Observability in topology-constrained multi-robot target tracking. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1795–1801. IEEE

  • Zhu, J., & Kia, S. S. (2019). Cooperative localization under limited connectivity. IEEE Transactions on Robotics, 35(6), 1523–1530.

    Article  Google Scholar 

  • Ziegler, T., Karrer, M., Schmuck, P., & Chli, M. (2021). Distributed formation estimation via pairwise distance measurements. IEEE Robotics and Automation Letters, 6(2), 3017–3024. https://doi.org/10.1109/LRA.2021.3062347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Pfeiffer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Derivation of a horizontal velocity model for the flapping wing drone

Appendix A. Derivation of a horizontal velocity model for the flapping wing drone

In this derivation, we consider three main forces acting on the flapping wing drone. Since we are mainly interested in accelerations, we already divide out the mass in the following equations, i.e. \(\mathbf {f} = \frac{\mathbf {F}}{m}\). First, the thrust along the drones central axis is given in the drones body frame as

$$\begin{aligned} \mathbf {f}_{T}^{b} =\left| T \right| \cdot \mathbf {e}_3 \end{aligned}$$
(A1)

Second, we consider a simple drag model with drag forces proportional and opposed to the drone’s body velocity:

$$\begin{aligned} \mathbf {f}^{b}_{d} = \left[ \begin{array}{cc} -b_x v^b_x \\ -b_y v^b_y \\ -b_z v^b_z \end{array} \right] \end{aligned}$$
(A2)

Finally, the force of gravity is easily expressed directly in the horizontal frame

$$\begin{aligned} \mathbf {f}_g^h = -\left| g \right| \cdot \mathbf {e}_3 \end{aligned}$$
(A3)

The sum of acceleration in the horizontal frame experienced by the flapper is then given by A4.

$$\begin{aligned} \mathbf {a}^h = \sum \mathbf {f}^h = \mathbf {R}_{hb}\mathbf {f}_T^b + \mathbf {R}_{hb} \mathbf {f}_d^b + \mathbf {f}_g^h \end{aligned}$$
(A4)

We can now put the drag coefficients into a diagonal matrix \(\mathbf {B} = \text {diag}\left( \mathbf {b}\right)\) and expand the equation. Recall that rotation matrices are orthogonal, and therefore, \(\mathbf {R}_{bh} = \mathbf {R}_{hb}^{-1}=\mathbf {R}_{hb}^T\). To simplify notation, we will at this point drop the superscript h for vectors in the horizontal frame.

$$\begin{aligned} \mathbf {a} = \left| T \right| \cdot \mathbf {R}_{hb}\mathbf {e}_3 -\mathbf {R}_{hb}\mathbf {B}\mathbf {R}_{hb}^{T} \cdot \mathbf {v} -\left| g \right| \cdot \mathbf {e}_3 \end{aligned}$$
(A5)

We now write out the equation for each individual axis in the horizontal frame.

$$\begin{aligned} a_x & = \left| T \right| \text {s}\theta \text {c}\phi - (b_x \text {c}^2\theta + b_y \text {s}^2\theta \text {s}^2\phi + b_z \text {s}^2\theta \text {c}^2\phi )\,v_x\nonumber \\&\,\, - (b_y - b_z)\text {s}\theta \text {s}\phi \text {c}\phi \,v_y + (b_x - b_y \text {s}^2\phi - b_z \text {c}^2\phi )\text {s}\theta \text {c}\theta \,v_z \end{aligned}$$
(A6)
$$\begin{aligned} a_{y} = & - \left| T \right|{\text{s}}\phi - (b_{y} - b_{z} ){\text{s}}\theta {\text{s}}\phi {\text{c}}\phi {\mkern 1mu} v_{x} \\ - & \,\,(b_{y} {\text{c}}^{2} \phi + b_{z} {\text{s}}^{2} \phi ){\mkern 1mu} v_{y} - (b_{y} - b_{z} ){\text{c}}\theta {\text{s}}\phi {\text{c}}\phi {\mkern 1mu} v_{z} \\ \end{aligned}$$
(A7)
$$\begin{aligned} a_z & = \left| T \right| \text {c}\theta \text {c}\phi + (b_x - b_y \text {s}^2\phi - b_z \text {c}^2\phi )\text {s}\theta \text {c}\theta \,v_x - (b_y - b_z)\text {c}\theta \text {s}\phi \text {c}\phi \,v_y \nonumber \\ &\,\, - (b_x\text {s}^2\theta + b_y \text {c}^2\theta \text {s}^2\phi + b_z\text {c}^2\theta \text {c}^2\phi )\,v_z - \left| g \right| \end{aligned}$$
(A8)

Assuming small roll and pitch angles, we can neglect any terms that include the multiplication of two sines (i.e. \(\text {s}^2\theta \approx \text {s}^2\phi \approx \text {s}\theta \text {s}\phi \approx 0\))

$$\begin{aligned} a_x= & {} \left| T \right| \text {s}\theta \text {c}\phi - b_x \text {c}^2\theta \,v_x + (b_x-b_z \text {c}^2\phi )\text {s}\theta \text {c}\theta \,v_z \end{aligned}$$
(A9)
$$\begin{aligned} a_y= & {} -\left| T \right| \text {s}\phi - b_y \text {c}^2\phi \,v_y - (b_y - b_z)\text {c}\theta \text {s}\phi \text {c}\phi \,v_z \end{aligned}$$
(A10)
$$\begin{aligned} a_z= & {} \left| T \right| \text {c}\theta \text {c}\phi + (b_x - b_z \text {c}^2\phi )\text {s}\theta \text {c}\theta \,v_x - (b_y - b_z)\text {c}\theta \text {s}\phi \text {c}\phi \,v_y - b_z\text {c}^2\theta \text {c}^2\phi \,v_z - \left| g \right| \end{aligned}$$
(A11)

Due to the difficulty of estimating the generated thrust of the flapper, we further simplify the model by decoupling horizontal and vertical movement of the flapper, i.e. we consider the vertical velocity to be negligible during horizontal motion. This allows us to find an expression for the thrust in terms of \(\left| g \right|\) and the horizontal velocities.

$$\begin{aligned} a_z= & {} \left| T \right| \text {c}\theta \text {c}\phi + (b_x - b_z \text {c}^2\phi )\text {s}\theta \text {c}\theta \,v_x - (b_y - b_z)\text {c}\theta \text {s}\phi \text {c}\phi \,v_y - \left| g \right| = 0 \end{aligned}$$
(A12)
$$\begin{aligned} \left| T \right|= & {} \frac{\left| g \right| }{\text {c}\theta \text {c}\phi } - (b_x-b_z\text {c}^2\phi )\text {s}\theta \, v_x + (b_y - b_z) \text {s}\phi \, v_y \end{aligned}$$
(A13)

This expression for the thrust can now be inserted into A9 and A10, while setting \(v_z = 0\). In both cases, the thrust is multiplied with a sine, which again allows us to neglect some terms due to our small angle approximation. As a result, only the gravity term remains in the final expressions for the acceleration alongside the deceleration caused by drag.

$$\begin{aligned} a_x= & {} \frac{\text {s}\theta }{\text {c}\theta }\left| g \right| - b_x \text {c}^2\theta v_x \end{aligned}$$
(A14)
$$\begin{aligned} a_y= & {} -\frac{\text {s}\phi }{\text {c}\theta \text {c}\phi }\left| g \right| - b_y \text {c}^2\phi v_y \end{aligned}$$
(A15)

We can now integrate these accelerations using the forward Euler method to estimate our horizontal velocities.

$$\begin{aligned} v_{x,k+1}&= v_{x,k} + \text {d}t \left( \frac{\text {s}\theta _k}{\text {c}\theta _k}\left| g \right| - b_x \text {c}^2\theta _k v_{x,k} \right) \end{aligned}$$
(A16)
$$\begin{aligned} v_{y,k+1}&= v_{y,k} + \text {d}t \left( -\frac{\text {s}\phi _k}{\text {c}\theta _k \text {c}\phi _k}\left| g \right| - b_y \text {c}^2\phi _k v_{y,k} \right) \end{aligned}$$
(A17)

The drag coefficients \(b_x\) and \(b_y\) can be estimated from a data set with ground truth using a least squares approach. Specifically, for an overdetermined system of equations \(\mathbf {y} = \mathbf {X}\mathbf {\beta }\) the least-squares estimate for the parameters \(\mathbf {\beta }\) is given by \(\hat{\mathbf {\beta }} = (\mathbf {X}^T\mathbf {X})^{-1}\mathbf {X}^T\mathbf {y}\). To determine the drag coefficients in our horizontal velocity model, we solve two independent least-squares problems with for \(b_x\)

$$\begin{aligned} \mathbf {\beta }&= b_x \end{aligned}$$
(A18)
$$\begin{aligned} y_{k}&= -\frac{v_{x,k+1}-v_{x,k}}{\text {d}t} + \frac{\text {s}\theta _k}{\text {c}\theta _k}\left| g \right| \end{aligned}$$
(A19)
$$\begin{aligned} X_{k}&= \text {c}^2 \theta _k \,v_{x,k} \end{aligned}$$
(A20)

and for \(b_y\)

$$\begin{aligned} \mathbf {\beta }&= b_y \end{aligned}$$
(A21)
$$\begin{aligned} y_{k}&= -\frac{v_{y,k+1}-v_{y,k}}{\text {d}t} - \frac{\text {s}\phi _k}{\text {c}\theta _k \text {c}\phi _k}\left| g \right| \end{aligned}$$
(A22)
$$\begin{aligned} X_{k}&= \text {c}^2 \phi _k \,v_{y,k} \end{aligned}$$
(A23)

From our data, we find \(b_x\) = 4.2 and \(b_y\) = 1.8 for the Flapper Drones.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer, S., Munaro, V., Li, S. et al. Three-dimensional relative localization and synchronized movement with wireless ranging. Swarm Intell 17, 147–172 (2023). https://doi.org/10.1007/s11721-022-00221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-022-00221-0

Keywords

Navigation