Abstract
Basic elements of cognition have been identified in the behaviour displayed by animal collectives, ranging from honeybee swarms to human societies. For example, an insect swarm is often considered a “super-organism” that appears to exhibit cognitive behaviour as a result of the interactions among the individual insects and between the insects and the environment. Progress in disciplines such as neurosciences, cognitive psychology, social ethology and swarm intelligence has allowed researchers to recognise and model the distributed basis of cognition and to draw parallels between the behaviour of social insects and brain dynamics. In this paper, we discuss the theoretical premises and the biological basis of Swarm Cognition, a novel approach to the study of cognition as a distributed self-organising phenomenon, and we point to novel fascinating directions for future work.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anderson, M. L. (2003). Embodied Cognition: A field guide. Artificial Intelligence, 149, 91–130.
Ashby, W. R. (1962). Principles of self-organizing systems. In H. von Foerster & G. W. Zopf Jr. (Eds.), Principles of self-organization (pp. 255–278). New York: Pergamon Press.
Barsalou, L. W. (2010). Introduction to 30th anniversary perspectives on cognitive science: Past, present, and future. Topics in Cognitive Science, 2(3), 322–327.
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700–765.
Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press.
Couzin, I. D. (2007). Collective minds. Nature, 455, 715.
Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.
Couzin, I. D., & Krause, J. (2003). Self-organization and collective behavior of vertebrates. Advances in the Study of Behavior, 32, 1–75.
Deco, G., Scarano, L., & Soto-Faraco, S. (2007). Weber’s law in decision making: integrating behavioral data in humans with a neurophysiological model. The Journal of Neuroscience, 27(42), 11192–11200.
Deneubourg, J.-L., Pasteels, J. M., & Verhaeghe, J. C. (1983). Probabilistic behaviour in ants: a strategy of errors? Journal of Theoretical Biology, 105(259–271).
Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing exploratory patterns of the Argentine ant. Journal of Insect Behavior, 3, 159–168.
Dennett, D. C. (1995). Intuition pumps. In J. Brockman (Ed.), The third culture: beyond the scientific revolution (pp. 180–197). New York: Simon & Schuster.
Detrain, C., & Deneubourg, J.-L. (2006). Self-organized structures in a superorganism: do ants “behave” like molecules? Physics of Life Reviews, 3, 162–187.
Detrain, C., Deneubourg, J.-L., & Pasteels, J. M. (Eds.) (1999). Information processing in social insects. Basel: Birkhäuser.
Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., & Gambardella, L. M. (2004). Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2–3), 223–245.
Franks, N. R., & Richardson, T. (2006). Teaching in tandem-running ants. Nature, 439(7073), 153.
Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F., & Sumpter, D. J. T. (2002). Information flow, opinion-polling and collective intelligence in house-hunting social insects. Philosophical Transactions of the Royal Society of London: Series B, 357(1427), 1567–1583.
Franks, N. R., Dornhaus, A., Fitzsimmons, J. P., & Stevens, M. (2003). Speed versus accuracy in collective decision-making. Proceedings of the Royal Society B: Biological Sciences, 270(1532), 2457–2463.
Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm intelligence. Swarm Intelligence, 1, 3–31.
Goldstone, R. L., & Gureckis, T. M. (2009). Collective behaviour. Trends in Cognitive Science, 1(3), 412–438.
Harvey, I., Di Paolo, E. A., Wood, R., Quinn, M., & Tuci, E. (2005). Evolutionary robotics: A new scientific tool for studying cognition. Artificial life, 11(1–2), 79–98.
Langton, C. G. (1988). Artificial life. In C. G. Langton (Ed.), Artificial life (pp. 1–47). Reading: Addison-Wesley.
Marshall, J. A. R., & Franks, N. R. (2009). Colony-level cognition. Current Biology, 19(10), 395–396.
Marshall, J. A. R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., & Franks, N. R. (2009). On optimal decision-making in brains and social insect colonies. Journal of the Royal Society Interface, 6, 1065–1074.
Morlino, G., Trianni, V., & Tuci, E. (2010). Collective perception in a swarm of autonomous robots. In J. Filipe & J. Kacprzyk (Eds.), Proceedings of the international conference on evolutionary computation (ICEC 2010) (pp. 51–59). Setubal: SciTePress.
Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems. New York: Wiley.
Passino, K. M., Seeley, T. D., & Visscher, P. K. (2008). Swarm cognition in honey bees. Behavioral Ecology and Sociobiology, 62(3), 401–414.
Passino, K. M., Seeley, T. D., & Visscher, P. K. (2010). Honey bee swarm cognition: Decision-making performance and adaptation. International Journal of Swarm Intelligence Research, 1(2), 80–97.
Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge: MIT Press.
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.
Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111, 333–367.
Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21), 9475.
Santana, P., & Correia, L. (2010). A swarm cognition realization of attention, action selection and spatial memory. Adaptive Behavior, 18(5), 428–447.
Santana, P., & Correia, L. (2011, this issue). Swarm cognition on off-road autonomous robots. Swarm Intelligence.
Schartz, E. (1990). Computational neuroscience. Cambridge: MIT Press.
Strogatz, S. H. (2003). Sync: The emerging science of spontaneous order. New York: Hyperion Press.
Sumpter, D. J. T. (2010). Collective animal behaviour. Princeton: Princeton University Press.
Trianni, V., & Tuci, E. (2009). Swarm cognition and artificial life. In LNCS/LNAI: Vol. 5777–5778. Advances in artificial life. Proceedings of the 10th european conference on artificial life (ECAL 2009).
Tuci, E., Gross, R., Trianni, V., Mondada, F., Bonani, M., & Dorigo, M. (2006). Cooperation through self-assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems, 1(2), 115–150.
Turner, S. (2011, this issue). Termites as models of swarm cognition. Swarm Intelligence.
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550–592.
Visscher, P. K. (2007). Group decision making in nest-site selection among social insects. Annual Review of Entomology, 52, 255–275.
Visscher, P. K., & Camazine, S. (1999). Collective decision and cognition in bees. Nature, 397, 400.
von Foerster, H. (1960). On self-organizing systems and their environments. In M. C. Yovits & S. Cameron (Eds.), Self-organizing systems (pp. 31–50). London: Pergamon Press.
Von Frisch, K. (1967). The dance language and orientation of bees. Cambridge: Harvard University Press.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Trianni, V., Tuci, E., Passino, K.M. et al. Swarm Cognition: an interdisciplinary approach to the study of self-organising biological collectives. Swarm Intell 5, 3–18 (2011). https://doi.org/10.1007/s11721-010-0050-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11721-010-0050-8