Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Swarm Cognition: an interdisciplinary approach to the study of self-organising biological collectives

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Basic elements of cognition have been identified in the behaviour displayed by animal collectives, ranging from honeybee swarms to human societies. For example, an insect swarm is often considered a “super-organism” that appears to exhibit cognitive behaviour as a result of the interactions among the individual insects and between the insects and the environment. Progress in disciplines such as neurosciences, cognitive psychology, social ethology and swarm intelligence has allowed researchers to recognise and model the distributed basis of cognition and to draw parallels between the behaviour of social insects and brain dynamics. In this paper, we discuss the theoretical premises and the biological basis of Swarm Cognition, a novel approach to the study of cognition as a distributed self-organising phenomenon, and we point to novel fascinating directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anderson, M. L. (2003). Embodied Cognition: A field guide. Artificial Intelligence, 149, 91–130.

    Article  Google Scholar 

  • Ashby, W. R. (1962). Principles of self-organizing systems. In H. von Foerster & G. W. Zopf Jr. (Eds.), Principles of self-organization (pp. 255–278). New York: Pergamon Press.

    Google Scholar 

  • Barsalou, L. W. (2010). Introduction to 30th anniversary perspectives on cognitive science: Past, present, and future. Topics in Cognitive Science, 2(3), 322–327.

    Article  Google Scholar 

  • Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700–765.

    Article  Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press.

    Google Scholar 

  • Couzin, I. D. (2007). Collective minds. Nature, 455, 715.

    Article  Google Scholar 

  • Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.

    Article  Google Scholar 

  • Couzin, I. D., & Krause, J. (2003). Self-organization and collective behavior of vertebrates. Advances in the Study of Behavior, 32, 1–75.

    Article  Google Scholar 

  • Deco, G., Scarano, L., & Soto-Faraco, S. (2007). Weber’s law in decision making: integrating behavioral data in humans with a neurophysiological model. The Journal of Neuroscience, 27(42), 11192–11200.

    Article  Google Scholar 

  • Deneubourg, J.-L., Pasteels, J. M., & Verhaeghe, J. C. (1983). Probabilistic behaviour in ants: a strategy of errors? Journal of Theoretical Biology, 105(259–271).

    Google Scholar 

  • Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing exploratory patterns of the Argentine ant. Journal of Insect Behavior, 3, 159–168.

    Article  Google Scholar 

  • Dennett, D. C. (1995). Intuition pumps. In J. Brockman (Ed.), The third culture: beyond the scientific revolution (pp. 180–197). New York: Simon & Schuster.

    Google Scholar 

  • Detrain, C., & Deneubourg, J.-L. (2006). Self-organized structures in a superorganism: do ants “behave” like molecules? Physics of Life Reviews, 3, 162–187.

    Article  Google Scholar 

  • Detrain, C., Deneubourg, J.-L., & Pasteels, J. M. (Eds.) (1999). Information processing in social insects. Basel: Birkhäuser.

    Google Scholar 

  • Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., & Gambardella, L. M. (2004). Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2–3), 223–245.

    Article  Google Scholar 

  • Franks, N. R., & Richardson, T. (2006). Teaching in tandem-running ants. Nature, 439(7073), 153.

    Article  Google Scholar 

  • Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F., & Sumpter, D. J. T. (2002). Information flow, opinion-polling and collective intelligence in house-hunting social insects. Philosophical Transactions of the Royal Society of London: Series B, 357(1427), 1567–1583.

    Article  Google Scholar 

  • Franks, N. R., Dornhaus, A., Fitzsimmons, J. P., & Stevens, M. (2003). Speed versus accuracy in collective decision-making. Proceedings of the Royal Society B: Biological Sciences, 270(1532), 2457–2463.

    Article  Google Scholar 

  • Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm intelligence. Swarm Intelligence, 1, 3–31.

    Article  Google Scholar 

  • Goldstone, R. L., & Gureckis, T. M. (2009). Collective behaviour. Trends in Cognitive Science, 1(3), 412–438.

    Google Scholar 

  • Harvey, I., Di Paolo, E. A., Wood, R., Quinn, M., & Tuci, E. (2005). Evolutionary robotics: A new scientific tool for studying cognition. Artificial life, 11(1–2), 79–98.

    Article  Google Scholar 

  • Langton, C. G. (1988). Artificial life. In C. G. Langton (Ed.), Artificial life (pp. 1–47). Reading: Addison-Wesley.

    Google Scholar 

  • Marshall, J. A. R., & Franks, N. R. (2009). Colony-level cognition. Current Biology, 19(10), 395–396.

    Article  Google Scholar 

  • Marshall, J. A. R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., & Franks, N. R. (2009). On optimal decision-making in brains and social insect colonies. Journal of the Royal Society Interface, 6, 1065–1074.

    Article  Google Scholar 

  • Morlino, G., Trianni, V., & Tuci, E. (2010). Collective perception in a swarm of autonomous robots. In J. Filipe & J. Kacprzyk (Eds.), Proceedings of the international conference on evolutionary computation (ICEC 2010) (pp. 51–59). Setubal: SciTePress.

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems. New York: Wiley.

    MATH  Google Scholar 

  • Passino, K. M., Seeley, T. D., & Visscher, P. K. (2008). Swarm cognition in honey bees. Behavioral Ecology and Sociobiology, 62(3), 401–414.

    Article  Google Scholar 

  • Passino, K. M., Seeley, T. D., & Visscher, P. K. (2010). Honey bee swarm cognition: Decision-making performance and adaptation. International Journal of Swarm Intelligence Research, 1(2), 80–97.

    Google Scholar 

  • Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge: MIT Press.

    Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.

    Article  Google Scholar 

  • Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111, 333–367.

    Article  Google Scholar 

  • Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21), 9475.

    Google Scholar 

  • Santana, P., & Correia, L. (2010). A swarm cognition realization of attention, action selection and spatial memory. Adaptive Behavior, 18(5), 428–447.

    Article  Google Scholar 

  • Santana, P., & Correia, L. (2011, this issue). Swarm cognition on off-road autonomous robots. Swarm Intelligence.

  • Schartz, E. (1990). Computational neuroscience. Cambridge: MIT Press.

    Google Scholar 

  • Strogatz, S. H. (2003). Sync: The emerging science of spontaneous order. New York: Hyperion Press.

    Google Scholar 

  • Sumpter, D. J. T. (2010). Collective animal behaviour. Princeton: Princeton University Press.

    Google Scholar 

  • Trianni, V., & Tuci, E. (2009). Swarm cognition and artificial life. In LNCS/LNAI: Vol. 5777–5778. Advances in artificial life. Proceedings of the 10th european conference on artificial life (ECAL 2009).

    Google Scholar 

  • Tuci, E., Gross, R., Trianni, V., Mondada, F., Bonani, M., & Dorigo, M. (2006). Cooperation through self-assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems, 1(2), 115–150.

    Article  Google Scholar 

  • Turner, S. (2011, this issue). Termites as models of swarm cognition. Swarm Intelligence.

  • Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550–592.

    Article  Google Scholar 

  • Visscher, P. K. (2007). Group decision making in nest-site selection among social insects. Annual Review of Entomology, 52, 255–275.

    Article  Google Scholar 

  • Visscher, P. K., & Camazine, S. (1999). Collective decision and cognition in bees. Nature, 397, 400.

    Article  Google Scholar 

  • von Foerster, H. (1960). On self-organizing systems and their environments. In M. C. Yovits & S. Cameron (Eds.), Self-organizing systems (pp. 31–50). London: Pergamon Press.

    Google Scholar 

  • Von Frisch, K. (1967). The dance language and orientation of bees. Cambridge: Harvard University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Trianni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trianni, V., Tuci, E., Passino, K.M. et al. Swarm Cognition: an interdisciplinary approach to the study of self-organising biological collectives. Swarm Intell 5, 3–18 (2011). https://doi.org/10.1007/s11721-010-0050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-010-0050-8

Keywords

Navigation