Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Resveratrol as an Anti-inflammatory Agent in Coronary Artery Disease: A Systematic Review, Meta-Analysis and Meta-Regression

  • Evidence-Based Integrative Medicine
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Background

Resveratrol is a non-flavonoid polyphenol that shows promise in reducing pro-inflammatory factors and maintaining endothelial function, which hints at its potential role in slowing atherosclerosis and preventing acute coronary events.

Objective

To study the cardioprotective effects of resveratrol on inflammatory mediators and endothelial function in patients with coronary artery disease (CAD).

Methods

A thorough search was conducted in databases (Cochrane Library, ProQuest, PubMed, LILACS, ScienceDirect, Springer, Taylor&Francis, CNKI, Wanfang, and Weipu) until September 24, 2023. The vasopro-inflammatory mediators, endothelial function and outcomes related to cardiovascular events were observed. Titles and abstracts were assessed, and bias was evaluated with Cochrane RoB 2.0. Heterogeneity of results was explored by meta-regression, certainty of evidence was assessed by the GRADE system, and conclusive evidence was enhanced by trial sequence analysis.

Results

Ten randomized controlled trials and 3 animal studies investigated resveratrol’s impact on inflammatory mediators and endothelial function. In primary prevention studies, meta-analysis showed a significant reduction (95% CI: −0.73 to −0.20; P=0.0005) in tumor necrosis factor-α (TNF-α) expression with resveratrol, demonstrating a dose-dependent relationship. No significant difference was observed in interleukin-6 (IL-6) expression with P=0.58 for primary prevention and P=0.57 for secondary prevention. Vascular endothelial nitric oxide synthase (eNOS) expression was significantly increased after resveratrol pre-treatment following CAD events. Secondary prevention studies yielded no significant results; however, meta-regression identified associations between age, hypertension, and lower doses with the extent of TNF-α alterations. High certainty of evidence supported TNF-α reduction, while evidence for IL-6 reduction and eNOS elevation was deemed low.

Conclusion

Resveratrol reduces TNF-α in individuals at risk for CAD, specifically 15 mg per day. However, its usefulness in patients with confirmed CAD is limited due to factors such as age, high blood pressure, and insufficient dosage. Due to the small sample size, the reduction of IL-6 is inconclusive. Animal studies suggest that resveratrol enhances endothelial function by increasing eNOS. (PROSPERO registration No. CRD42023465234)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data is available within the manuscript and supplementary files.

References

  1. Teimouri M, Homayouni-Tabrizi M, Rajabian A, et al. Antiinflammatory effects of resveratrol in patients with cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2022;102863.

  2. Koushki M, Dashatan NA, Meshkani R. Effect of resveratrol supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Clin Ther 2018;40:1180–1192.

    Article  CAS  PubMed  Google Scholar 

  3. Omraninava M, Razi B, Aslani S, et al. Effect of resveratrol on inflammatory cytokines: a meta-analysis of randomized controlled trials. Eur J Pharmacol 2021;908:174380.

    Article  CAS  PubMed  Google Scholar 

  4. Su H, Liu R, Chang M, et al. Effect of dietary alpha-linolenic acid on blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2018;57:877–891.

    Article  CAS  PubMed  Google Scholar 

  5. Akbari M, Tamtaji OR, Lankarani KB, et al. The effects of resveratrol supplementation on endothelial function and blood pressures among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. High Blood Press Cardiovasc Prev 2019;26:305–319.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Zou J, Huang Y, et al. Effect of resveratrol on platelet aggregation in vivo and in vitro. Chin Med J (Engl) 2002;115:377–380.

    Google Scholar 

  7. Deeks JJ, Higgins JPT, Altman DG. Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). Cochrane, 2023. Available from: www.training.cochrane.org/handbook.

  8. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 2021;88:105906.

    Article  PubMed  Google Scholar 

  9. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014. Available from: https://doi.org/10.1186/1471-2288-14-135

  10. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898. Available from: https://www.bmj.com/content/bmj/366/bmj.l4898.full.pdf

    Article  PubMed  Google Scholar 

  11. Hooijmans CR, Rovers MM, De Vries RBM, et al. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014;14:1–9.

    Article  Google Scholar 

  12. McMaster University. GRADEpro GDT: GRADEpro Guideline Development Tool. 2015. Available from: http://gradepro.org

  13. Guyatt GH, Oxman AD, Schünemann HJ, et al. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 2011;64:380–382.

    Article  PubMed  Google Scholar 

  14. Hultcrantz M, Rind D, Akl EA, Treweek S, et al. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol 2017;87:4–13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zeng L, Brignardello-Petersen R, Hultcrantz M, et al. GRADE Guidance 34: update on rating imprecision using a minimally contextualized approach. J Clin Epidemiol 2022;150:216–224.

    Article  PubMed  Google Scholar 

  16. Schünemann HJ, Neumann I, Hultcrantz M, et al. GRADE guidance 35: update on rating imprecision for assessing contextualized certainty of evidence and making decisions. J Clin Epidemiol 2022;150:225–242.

    Article  PubMed  Google Scholar 

  17. Ryan R, Hill S. How to GRADE the quality of the evidence. Cochrane Consum Commun Gr 2016;3. Available from: http://cccrg.cochrane.org/author-resources

  18. Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Higgins JPT, Thomas J, Chandler J, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated August 2023). Cochrane; 2023. Available from: www.training.cochrane.org/handbook

  20. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–188.

    Article  CAS  PubMed  Google Scholar 

  21. Borenstein M, Hedges L, Higgins J, et al. Comprehensive meta-analysis. Software version 3. 2019. Available from: https://www.meta-analysis.com/

  22. Unverzagt S, Peinemann F, Oemler M, et al. Meta-regression analyses to explain statistical heterogeneity in a systematic review of strategies for guideline implementation in primary health care. PLoS One 2014;9:e110619.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Patsopoulos NA, Evangelou E, Ioannidis JPA. Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol 2008;37:11481157.

    Article  Google Scholar 

  24. Terrin N, Schmid CH, Lau J, et al. Adjusting for publication bias in the presence of heterogeneity. Stat Med 2003;22:2113–2126.

    Article  PubMed  Google Scholar 

  25. Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;10881101.

  27. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method. Biometrics 2000;56:455–463.

    Article  CAS  PubMed  Google Scholar 

  28. Thorlund K, Engstrøm J, Wetterslev J, et al. User manual for trial sequential analysis (TSA). Copenhagen Trial Unit, Cent Clin Interv Res Copenhagen, Denmark 2011;1:1–115.

    Google Scholar 

  29. Tomé-Carneiro J, Gonzálvez M, Larrosa M, et al. One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am J Cardiol 2012;110:356–363.

    Article  PubMed  Google Scholar 

  30. Khodabandehloo H, Seyyedebrahimi S, Esfahani EN, et al. Resveratrol supplementation decreases blood glucose without changing the circulating CD14+ CD16+ monocytes and inflammatory cytokines in patients with type 2 diabetes: a randomized, doubleblind, placebo-controlled study. Nutr Res 2018;54:40–51.

    Article  CAS  PubMed  Google Scholar 

  31. Poulsen MM, Vestergaard PF, Clasen BF, et al. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 2013;62:1186–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshino J, Conte C, Fontana L, et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab 2012;16:658564.

    Article  Google Scholar 

  33. Zahedi HS, Jazayeri S, Ghiasvand R, et al. Effects of Polygonum cuspidatum containing resveratrol on inflammation in male professional basketball players. Int J Prev Med 2013;4:S1.

    PubMed  PubMed Central  Google Scholar 

  34. Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 2013;72:69–82.

    Article  PubMed  Google Scholar 

  35. Tomé-Carneiro J, Gonzálvez M, Larrosa M, et al. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther 2013;27:37–48.

    Article  PubMed  Google Scholar 

  36. Chekalina N, Kazakov Y, Mamontova T, et al. Resveratrol more effectively than quercetin reduces endothelium degeneration and level of necrosis factor α in patients with coronary artery disease. Wiad Lek 2016;69:475–479.

    PubMed  Google Scholar 

  37. Diaz M, Avila A, Degens H, Coeckelberghs E, et al. Acute resveratrol supplementation in coronary artery disease: Towards patient stratification. Scand Cardiovasc J 2020;54:14–19.

    Article  CAS  PubMed  Google Scholar 

  38. Magyar K, Halmosi R, Palfi A, et al. Cardioprotection by resveratrol: a human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc 2012;50:179–187.

    Article  CAS  PubMed  Google Scholar 

  39. Feng L, Ren J, Li Y, et al. Resveratrol protects against isoproterenol induced myocardial infarction in rats through VEGF-B/AMPK/eNOS/NO signalling pathway. Free Radic Res 2019;53:82–93.

    Article  CAS  PubMed  Google Scholar 

  40. Penumathsa SV, Thirunavukkarasu M, Koneru S, et al. Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat. J Mol Cell Cardiol 2007;42:508–516.

    Article  CAS  PubMed  Google Scholar 

  41. Sun L, Hu Y, Mishra A, et al. Protective role of poly (lactic-co-glycolic) acid nanoparticle loaded with resveratrol against isoproterenol-induced myocardial infarction. Biofactors 2020;46:421–431.

    Article  CAS  PubMed  Google Scholar 

  42. Tsioufis P, Theofilis P, Tsioufis K, et al. The impact of cytokines in coronary atherosclerotic plaque: current therapeutic approaches. Int J Mol Sci 2022;23:15937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McKellar GE, McCarey DW, Sattar N, et al. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol 2009;6:410–417.

    Article  CAS  PubMed  Google Scholar 

  44. Brånén L, Hovgaard L, Nitulescu M, et al. Inhibition of tumor necrosis factor-α reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004;24:2137–2142.

    Article  PubMed  Google Scholar 

  45. Rolski F, Blyszczuk P. Complexity of TNF-α signaling in heart disease. J Clin Med 2020;9:3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, et al. Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci 2021;22:3850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martens FMAC, Rabelink TJ, op’t Roodt J, et al. TNF-α induces endothelial dysfunction in diabetic adults, an effect reversible by the PPAR-γ agonist pioglitazone. Eur Heart J 2006;27:1605–1609.

    Article  CAS  PubMed  Google Scholar 

  48. Sterpetti AV. Inflammatory cytokines and atherosclerotic plaque progression. Therapeutic implications. Curr Atheroscler Rep 2020;22:1–12.

    Article  Google Scholar 

  49. Spagnoli LG, Bonanno E, Sangiorgi G, et al. Role of inflammation in atherosclerosis. J Nucl Med 2007;48:1800–1815.

    Article  PubMed  Google Scholar 

  50. Dunlay SM, Weston SA, Redfield MM, et al. Tumor necrosis factor-α and mortality in heart failure: a community study. Circulation 2008;118:625–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rivera AS, Sinha A, Ahmad FS, et al. Long-term trajectories of left ventricular ejection fraction in patients with chronic inflammatory diseases and heart failure: an analysis of electronic health records. Circ Hear Fail 2021;14:e008478.

    Article  Google Scholar 

  52. Wohlfahrt P, Nativi-Nicolau J, Zhang M, et al. Quality of life in patients with heart failure with recovered ejection fraction. JAMA Cardiol 2021;6:957–962.

    Article  PubMed  Google Scholar 

  53. Berman AY, Motechin RA, Wiesenfeld MY, et al. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 2017;1:35.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gal R, Deres L, Toth K, et al. The effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results. Int J Mol Sci 2021;22:10152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation 2004;109:II–2.

    Google Scholar 

  56. Iwakami N, Nagai T, Furukawa TA, et al. Evidence-based utilization of prognostic prediction models in cardiovascular medicine. Circ Reports 2020;2:10–16.

    Article  Google Scholar 

  57. Robich MP, Osipov RM, Nezafat R, et al. Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation 2010;122:S142–S149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu Y, Takayama T, Wang B, et al. Restenosis inhibition and re-differentiation of TGFβ/Smad3-activated smooth muscle cells by resveratrol. Sci Rep 2017;7:41916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zordoky BNM, Robertson IM, Dyck JRB. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta (BBA)-Molecular Basis Dis 2015;1852:1155–1177.

    Article  CAS  Google Scholar 

  60. Bonnefont-Rousselot D. Resveratrol and cardiovascular diseases. Nutrients 2016;8:250.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cottart C, Nivet-Antoine V, Beaudeux J. Review of recent data on the metabolism, biological effects, and toxicity of resveratrol in humans. Mol Nutr Food Res 2014;58:7–21.

    Article  CAS  PubMed  Google Scholar 

  62. Yuan S, Carter P, Bruzelius M, et al. Effects of tumour necrosis factor on cardiovascular disease and cancer: a two-sample Mendelian randomization study. EBio Med 2020;59:102956.

    CAS  Google Scholar 

  63. Gu SX, Dayal S. Redox mechanisms of platelet activation in aging. Antioxidants 2022;11:995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol 2007;165:710–718.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Damay VA and Ivan I conceptualized the research design, conducted the research, performed the data analysis, wrote and revised the manuscript, while also providing content perspectives. Damay VA acted as the project supervisor. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Vito A. Damay.

Ethics declarations

The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damay, V.A., Ivan, I. Resveratrol as an Anti-inflammatory Agent in Coronary Artery Disease: A Systematic Review, Meta-Analysis and Meta-Regression. Chin. J. Integr. Med. 30, 927–937 (2024). https://doi.org/10.1007/s11655-024-3665-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-024-3665-0

Keywords

Navigation