Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Long-term Visual Tracking: Review and Experimental Comparison

  • Review
  • Published:
Machine Intelligence Research Aims and scope Submit manuscript

Abstract

As a fundamental task in computer vision, visual object tracking has received much attention in recent years. Most studies focus on short-term visual tracking which addresses shorter videos and always-visible targets. However, long-term visual tracking is much closer to practical applications with more complicated challenges. There exists a longer duration such as minute-level or even hour-level in the long-term tracking task, and the task also needs to handle more frequent target disappearance and reappearance. In this paper, we provide a thorough review of long-term tracking, summarizing long-term tracking algorithms from two perspectives: framework architectures and utilization of intermediate tracking results. Then we provide a detailed description of existing benchmarks and corresponding evaluation protocols. Furthermore, we conduct extensive experiments and analyse the performance of trackers on six benchmarks: VOTLT2018, VOTLT2019 (2020/2021), OxUvA, LaSOT, TLP and the long-term subset of VTUAV-V. Finally, we discuss the future prospects from multiple perspectives, including algorithm design and benchmark construction. To our knowledge, this is the first comprehensive survey for long-term visual object tracking. The relevant content is available at https://github.com/wangdong-dut/Long-term-Visual-Tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. Mueller, N. Smith, B. Ghanem. A benchmark and simulator for UAV tracking. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp.445–461, 2016. DOI: https://doi.org/10.1007/978-3-319-46448-0_27.

    Google Scholar 

  2. A. Moudgil, V. Gandhi. Long-term visual object tracking benchmark. In Proceedings of the 14th Asian Conference on Computer Vision, Springer, Perth, Australia, pp. 629–645, 2019. DOI: https://doi.org/10.1007/978-3-030-20890-5_40.

    Google Scholar 

  3. A. Lukežič, L. Č. Zajc, T. Vojíř, J. Matas, M. Kristan. Now you see me: Evaluating performance in long-term visual tracking. [Online], Available: https://arxiv.org/abs/1804.07056, 2018.

  4. Z. Kalal, K. Mikolajczyk, J. Matas. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1409–1422, 2012. DOI: https://doi.org/10.1109/TPAMI.2011.239.

    Article  Google Scholar 

  5. J. Valmadre, L. Bertinetto, J. F. Henriques, R. Tao, A. Vedaldi, A. W. M. Smeulders, P. H. S. Torr, E. Gavves. Long-term tracking in the wild: A benchmark. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 692–707, 2018. DOI: https://doi.org/10.1007/978-3-030-01219-9_41.

    Google Scholar 

  6. A. Lukežič, L. Č. Zajc, T. Vojíř, J. Matas, M. Kristan. Performance evaluation methodology for long-term visual object tracking. [Online], Available: https://arxiv.org/abs/1906.08675, 2019.

  7. Y. H. Zhang, L. J. Wang, D. Wang, J. Q. Qi, H. C. Lu. Learning regression and verification networks for robust long-term tracking. International Journal of Computer Vision, vol. 129, no. 9, pp. 2536–2547, 2021. DOI: https://doi.org/10.1007/s11263-021-01487-3.

    Article  Google Scholar 

  8. B. Yan, H. J. Zhao, D. Wang, H. C. Lu, X. Y. Yang. ‘Skimming-perusal’ tracking: A framework for real-time and robust long-term tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE, Seoul, Korea, pp. 2385–2393, 2019. DOI: https://doi.org/10.1109/ICCV.2019.00247.

    Google Scholar 

  9. K. N. Dai, Y. H. Zhang, D. Wang, J. H. Li, H. C. Lu, X. Y. Yang. High-performance long-term tracking with meta-updater. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp.6297–6306, 2020. DOI: https://doi.org/10.1109//CVPR42600.2020.00633.

    Google Scholar 

  10. C. Mayer, M. Danelljan, D. P. Paudel, L. Van Gool. Learning target candidate association to keep track of what not to track. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 13424–13434, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.01319.

    Google Scholar 

  11. P. Voigtlaender, J. Luiten, P. H. S. Torr, B. Leibe. Siam R-CNN: Visual tracking by re-detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 6577–6587, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00661.

    Google Scholar 

  12. X. Q. Zhang, R. H. Jiang, C. X. Fan, T. Y. Tong, T. Wang, P. C. Huang. Advances in deep learning methods for visual tracking: Literature review and fundamentals. International Journal of Automation and Computing, vol. 18, no. 3, pp. 311–333, 2021. DOI: https://doi.org/10.1007/s11633-020-1274-8.

    Article  Google Scholar 

  13. P. X. Li, D. Wang, L. J. Wang, H. C. Lu. Deep visual tracking: Review and experimental comparison. Pattern Recognition, vol. 76, pp. 323–338, 2018. DOI: https://doi.org/10.1016/j.patcog.2017.11.007.

    Article  Google Scholar 

  14. S. M. Marvasti-Zadeh, L. Cheng, H. Ghanei-Yakhdan, S. Kasaei. Deep learning for visual tracking: A comprehensive survey. IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 5, pp. 3943–3968, 2022. DOI: https://doi.org/10.1109/TITS.2020.3046478.

    Article  Google Scholar 

  15. D. S. Bolme, J. R. Beveridge, B. A. Draper, Y. M. Lui. Visual object tracking using adaptive correlation filters. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, San Francisco, USA, pp. 2544–2550, 2010. DOI: https://doi.org/10.1109/CVPR.2010.5539960.

    Google Scholar 

  16. J. F. Henriques, R. Caseiro, P. Martins, J. Batista. Exploiting the circulant structure of tracking-by-detection with kernels. In Proceedings of the 12th European Conference on Computer Vision, Springer, Florence, Italy, pp. 702–715, 2012. DOI: https://doi.org/10.1007/978-3-642-33765-9_50.

    Google Scholar 

  17. J. F. Henriques, R. Caseiro, P. Martins, J. Batista. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596, 2015. DOI: https://doi.org/10.1109/TPAMI.2014.2345390.

    Article  Google Scholar 

  18. Y. Li, J. K. Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the European Conference on Computer Vision, Springer, Zurich, Switzerland, pp. 254–265, 2015. DOI: https://doi.org/10.1007/978-3-319-16181-5_18.

    Google Scholar 

  19. M. Danelljan, G. Häger, F. S. Khan, M. Felsberg. Accurate scale estimation for robust visual tracking. In Proceedings of the British Machine Vision Conference, BMVA Press, Nottingham, UK, pp. 1–11, 2014. DOI: https://doi.org/10.5244/C.28.65.

    Google Scholar 

  20. M. Danelljan, G. Häger, F. S. Khan, M. Felsberg. Learning spatially regularized correlation filters for visual tracking. In Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, pp. 4310–4318, 2015. DOI: https://doi.org/10.1109/ICCV.2015.490.

  21. M. Danelljan, A. Robinson, F. S. Khan, M. Felsberg. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 472–488, 2016. DOI: https://doi.org/10.1007/978-3-319-46454-1_29.

    Google Scholar 

  22. M. Danelljan, G. Bhat, F. S. Khan, M. Felsberg. ECO: Efficient convolution operators for tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 6931–6939, 2017. DOI: https://doi.org/10.1109/CVPR2017.733

  23. R. Tao, E. Gavves, A. W. M. Smeulders. Siamese instance search for tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 1420–1429, 2016. DOI: https://doi.org/10.1109/CVPR.2016.158.

  24. L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, P. H. S. Torr. Fully-convolutional siamese networks for object tracking. In Proceedings of the European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp.850–865, 2016. DOI: https://doi.org/10.1007/978-3-319-48881-3_56.

  25. B. Li, J. J. Yan, W. Wu, Z. Zhu, X. L. Hu. High performance visual tracking with Siamese region proposal network. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp.8971–8980, 2018. DOI: https://doi.org/10.1109/CVPR.2018.00935.

  26. Y. D. Xu, Z. Y. Wang, Z. X. Li, Y. Yuan, G. Yu. Siam-FC++: Towards robust and accurate visual tracking with target estimation guidelines. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, pp. 12549–12556, 2020. DOI: https://doi.org/10.1609/aaai.v34i07.6944.

  27. Z. P. Zhang, H. W. Peng, J. L. Fu, B. Li, W. M. Hu. Ocean: Object-aware anchor-free tracking. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 771–787, 2020. DOI: https://doi.org/10.1007/978-3-030-58589-1_46.

    Google Scholar 

  28. Z. D. Chen, B. N. Zhong, G. R. Li, S. P. Zhang, R. R. Ji. Siamese box adaptive network for visual tracking. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 6667–6676, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00670.

    Google Scholar 

  29. D. Y. Guo, J. Wang, Y. Cui, Z. H. Wang, S. Y. Chen. SiamCAR: Siamese fully convolutional classification and regression for visual tracking. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 6268–6276, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00630.

    Google Scholar 

  30. Z. Zhu, Q. Wang, B. Li, W. Wu, J. J. Yan, W. M. Hu. Distractor-aware siamese networks for visual object tracking. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 103–119, 2018. DOI: https://doi.org/10.1007/978-3-030-01240-3_7.

    Google Scholar 

  31. B. Li, W. Wu, Q. Wang, F. Y. Zhang, J. L. Xing, J. J. Yan. SiamRPN++: Evolution of siamese visual tracking with very deep networks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 4277–4286, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00441.

    Google Scholar 

  32. Z. P. Zhang, H. W. Peng. Deeper and wider siamese networks for real-time visual tracking. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 4586–4595, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00472.

    Google Scholar 

  33. M. Danelljan, G. Bhat, F. S. Khan, M. Felsberg. ATOM: Accurate tracking by overlap maximization. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 4655–4664, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00479.

    Google Scholar 

  34. G. Bhat, M. Danelljan, L. Van Gool, R. Timofte. Learning discriminative model prediction for tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE, Long Beach, USA, pp. 6181–6190, 2019. DOI: https://doi.org/10.1109/ICCV.2019.00628.

    Google Scholar 

  35. M. Danelljan, L. Van Gool, R. Timofte. Probabilistic regression for visual tracking. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 7181–7190, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00721.

    Google Scholar 

  36. G. Bhat, M. Danelljan, L. Van Gool, R. Timofte. Know your surroundings: Exploiting scene information for object tracking. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 205–221, 2020. DOI: https://doi.org/10.1007/978-3-030-58592-1_13.

    Google Scholar 

  37. X. Chen, B. Yan, J. W. Zhu, D. Wang, X. Y. Yang, H. C. Lu. Transformer tracking. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 8122–8131, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.00803.

    Google Scholar 

  38. B. Yan, H. W. Peng, J. L. Fu, D. Wang, H. C. Lu. Learning spatio-temporal transformer for visual tracking. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 10428–10437, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.01028.

    Google Scholar 

  39. S. Karthik, A. Moudgil, V. Gandhi. Exploring 3 R’s of long-term tracking: Re-detection, recovery and reliability. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, pp. 1000–1009, 2020. DOI: https://doi.org/10.1109/WACV45572.2020.9093465.

  40. T. P. Kuipers, D. Arya, D. K. Gupta. Hard occlusions in visual object tracking. In Proceedings of the European Conference on Computer Vision, Springer, Glasgow, UK, pp. 299–314, 2020. DOI: https://doi.org/10.1007/978-3-030-68238-5_22.

    Google Scholar 

  41. A. Lukezic, U. Kart, J. Käpylä, A. Durmush, J. K. Kamarainen, J. Matas, M. Kristan. CDTB: A color and depth visual object tracking dataset and benchmark. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Seoul, Korea, pp. 10012–10021, 2019. DOI: https://doi.org/10.1109/ICCV.2019.01011.

    Google Scholar 

  42. Y. L. Qian, S. Yan, A. Lukežič, M. Kristan, J. K. Kämäräinen, J. Matas. DAL: A deep depth-aware long-term tracker. In Proceedings of the 25th International Conference on Pattern Recognition, IEEE, Milan, Italy, pp. 7825–7832, 2021. DOI

    Google Scholar 

  43. U. Kart, A. Lukežič, M. Kristan, J. K. Kämäräinen, J. Matas. Object tracking by reconstruction with view-specific discriminative correlation filters. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 1339–1348, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00143.

    Google Scholar 

  44. G. Nebehay, R. Pflugfelder. Clustering of static-adaptive correspondences for deformable object tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 2784–2791, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7298895.

  45. Y. Hua, K. Alahari, C. Schmid. Occlusion and motion reasoning for long-term tracking. In Proceedings of the 13th European Conference on Computer Vision, Springer, Zurich, Switzerland, pp. 172–187, 2014. DOI: https://doi.org/10.1007/978-3-319-10599-4_12.

    Google Scholar 

  46. C. Ma, X. K. Yang, C. Y. Zhang, M. H. Yang. Long-term correlation tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 5388–5396, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7299177.

  47. N. Wang, W. G. Zhou, H. Q. Li. Reliable re-detection for long-term tracking. IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 3, pp. 730–743, 2019. DOI: https://doi.org/10.1109/TCSVT.2018.2816570.

    Article  Google Scholar 

  48. L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P. H. S. Torr. Staple: Complementary learners for real-time tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 1401–1409, 2016. DOI: https://doi.org/10.1109/CVPR.2016.156.

  49. H. Fan, H. B. Ling. Parallel tracking and verifying. IEEE Transactions on Image Processing, vol. 28, no. 8, pp. 4130–4144, 2019. DOI: https://doi.org/10.1109/TIP.2019.2904789.

    Article  MATH  Google Scholar 

  50. M. Danelljan, G. Häger, F. S. Khan, M. Felsberg. Discriminative scale space tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 8, pp. 1561–1575, 2017. DOI: https://doi.org/10.1109/TPAMI.2016.2609928.

    Article  Google Scholar 

  51. Z. B. Hong, Z. Chen, C. H. Wang, X. Mei, D. Prokhorov, D. C. Tao. Multi-store tracker (MUSTer): A cognitive psychology inspired approach to object tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 749–758, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7298675.

  52. N. X. Liang, G. L. Wu, W. X. Kang, Z. Y. Wang, D. D. Feng. Real-time long-term tracking with prediction-detection-correction. IEEE Transactions on Multimedia, vol. 20, no. 9, pp. 2289–2302, 2018. DOI: https://doi.org/10.1109/TMM.2018.2803518.

    Article  Google Scholar 

  53. J. W. Liao, C. Qi, J. Z. Cao, L. Ren, G. P. Zhang. Real-time long-term tracker with tracking-verification-detection-refinement. Journal of Visual Communication and Image Representation, vol. 72, Article number 102896, 2020. DOI: https://doi.org/10.1016/j.jvcir.2020.102896.

  54. A. Lukežič, L. Č. Zajc, T. Vojíř, J. Matas, M. Kristan. FuCoLoT-a fully-correlational long-term tracker. In Proceedings of the 14th Asian Conference on Computer Vision, Springer, Perth, Australia, pp. 595–611, 2019. DOI: https://doi.org/10.1007/978-3-030-20890-5_38.

    Google Scholar 

  55. A. Lukežic, T. Vojír, L. C. Zajc, J. Matas, M. Kristan. Discriminative correlation filter with channel and spatial reliability. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 4847–4856, 2017. DOI: https://doi.org/10.1109/CVPR.2017.515.

  56. Z. P. Wang, H. Wang, B. F. Fang, C. J. Xie. Support vector correlation filter with long-term tracking. Signal, Image and Video Processing, vol. 12, no. 8, pp. 1541–1549, 2018. DOI: https://doi.org/10.1007/s11760-018-1310-0.

    Article  Google Scholar 

  57. F. Tang, Q. Ling. Contour-aware long-term tracking with reliable re-detection. IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 12, pp. 4739–4754, 2020. DOI: https://doi.org/10.1109/TCSVT.2019.2957748.

    Article  Google Scholar 

  58. H. Lee, S. Choi, C. Kim. A memory model based on the siamese network for long-term tracking. In Proceedings of the European Conference on Computer Vision Workshops, Springer, Munich, Germany, pp. 100–115, 2019. DOI: https://doi.org/10.1007/978-3-030-11009-3_5.

    Google Scholar 

  59. E. Gavves, R. Tao, D. K. Gupta, A. W. M. Smeulders. Model decay in long-term tracking. In Proceedings of the 25th International Conference on Pattern Recognition, IEEE, Milan, Italy, pp. 2685–2692, 2021. DOI: https://doi.org/10.1109/ICPR48806.2021.9412648.

    Google Scholar 

  60. A. G. Howard, M. L. Zhu, B. Chen, D. Kalenichenko, W. J. Wang, T. Weyand, M. Andreetto, H. Adam. MobileNets: Efficient convolutional neural networks for mobile vision applications. [Online], Available: https://arxiv.org/abs/1704.04861, 2017.

  61. H. Nam, B. Han. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 4293–4302, 2016. DOI: https://doi.org/10.1109/CVPR.2016.465.

  62. H. Wu, X. Y. Yang, Y. Yang, G. Z. Liu. Flow guided short-term trackers with cascade detection for long-term tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, IEEE, Seoul, Korea, pp. 170–178, 2019. DOI: https://doi.org/10.1109/ICCVW.2019.00026.

    Google Scholar 

  63. K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition. [Online], Available: https://arxiv.org/abs/1409.1556, 2014.

  64. K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2016. DOI: https://doi.org/10.1109/CVPR.2016.90.

  65. M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. Č. Zajc, T. Vojir, G. Bhat, A. Lukežič, A. Eldesokey, G. Fernández, Á. García-Martín, Á. Iglesias-Arias, A. A. Alatan, A. González-García, A. Petrosino, A. Memarmoghadam, A. Vedaldi, A. Muhič, A. F. He, A. Smeulders, A. G. Perera, B. Li, B. Y. Chen, C. Kim, C. S. Xu, C. Z. Xiong, C. Tian, C. Luo, C. Sun, C. Hao, D. Kim, D. Mishra, D. M. Chen, D. Wang, D. Wee, E. Gavves, E. Gundogdu, E. Velasco-Salido, F. S. Khan, F. Yang, F. Zhao, F. Li, F. Battistone, G. De Ath, G. R. K. S. Subrahmanyam, G. Bastos, H. B. Ling, H. K. Galoogahi, H. Lee, H. J. Li, H. J. Zhao, H. Fan, H. G. Zhang, H. Possegger, H. Q. Li, H. C. Lu, H. Zhi, H. Y. Li, H. Lee, H. J. Chang, I. Drummond, J. Valmadre, J. S. Martin, J. Chahl, J. Y. Choi, J. Li, J. Q. Wang, J. Q. Qi, J. Sung, J. Johnander, J. Henriques, J. Choi, J. Van De weijer, J. R. Herranz, J. M. Martínez, J. Kittler, J. F. Zhuang, J. Y. Gao, K. Grm, L. C. Zhang, L. J. Wang, L. X. Yang, L. Rout, L. Si, L. Bertinetto, L. T. Chu, M. Q. Che, M. E. Maresca, M. Danelljan, M. H. Yang, M. Abdelpakey, M. Shehata, M. Y. N. G. Kang, N. Lee, N. Wang, O. Miksik, P. Moallem, P. Vicente-Moñivar, P. Senna, P. X. Li, P. Torr, P. M. Raju, Q. Ruihe, Q. Wang, Q. Zhou, Q. Guo, R. Martín-Nieto, R. K. Gorthi, R. Tao, R. Bowden, R. Everson, R. L. Wang, S. Yun, S. Choi, S. Vivas, S. Bai, S. P. Huang, S. H. Wu, S. Hadfield, S. W. Wang, S. Golodetz, T. Ming, T. Y. Xu, T. Z. Zhang, T. Fischer, V. Santopietro, V. Štruc, W. Wei, W. M. Zuo, W. Feng, W. Wu, W. Zou, W. M. Hu, W. G. Zhou, W. J. Zeng, X. F. Zhang, X. H. Wu, X. J. Wu, X. M. Tian, Y. Li, Y. Lu, Y. W. Law, Y. Wu, Y. Demiris, Y. C. Yang, Y. F. Jiao, Y. H. Li, Y. H. Zhang, Y. X. Sun, Z. Zhang, Z. Zhu, Z. H. Feng, Z. H. Wang, Z. Q. He. The sixth visual object tracking VOT2018 challenge results. In Proceedings of the European Conference on Computer Vision Workshops, Springer, Munich, Germany, pp. 3–53, 2019. DOI: https://doi.org/10.1007/978-3-030-11009-3_1.

    Google Scholar 

  66. M. Kristan, J. Matas, A. Leonardis, M. Felsberg, R. Pflugfelder, J. K. Kämäräinen, L. C. Zajc, O. Drbohlav, A. Lukezic, A. Berg, A. Eldesokey, J. Käpylä, G. Fernández, A. Gonzalez-Garcia, A. Memarmoghadam, A. D. Lu, A. F. He, A. Varfolomieiev, A. Chan, A. S. Tripathi, A. Smeulders, B. S. Pedasingu, B. X. Chen, B. P. Zhang, B. Y. Wu, B. Li, B. He, B. Yan, B. Bai, B. Li, B. Li, B. H. Kim, C. Ma, C. Fang, C. Qian, C. Chen, C. L. Li, C. Q. Zhang, C. Y. Tsai, C. Luo, C. Micheloni, C. H. Zhang, D. C. Tao, D. Gupta, D. J. Song, D. Wang, E. Gavves, E. Yi, F. S. Khan, F. Y. Zhang, F. Wang, F. Zhao, G. De Ath, G. Bhat, G. Q. Chen, G. T. Li, H. Cevikalp, H. Du, H. J. Zhao, H. Saribas, H. M. Jung, H. L. Bai, H. Y. Yu, H. Y. Yu, H. W. Peng, H. C. Lu, H. Li, J. K. Li, J. H. Li, J. L. Fu, J. Chen, G. Gao, J. Zhao, J. Tang, J. Li, J. J. Wu, J. T. Liu, J. Q. Wang, J. Q. Qi, J. Y. Zhang, J. K. Tsotsos, J. H. Lee, J. van de Weijer, J. Kittler, J. H. Lee, J. F. Zhuang, K. K. Zhang, K. K. Wang, K. N. Dai, L. Chen, L. Liu, L. D. Guo, L. Zhang, L. Wang, L. L. Wang, L. C. Zhang, L. J. Wang, L. J. Zhou, L. Y. Zheng, L. T. Rout, L. Van Gool, L. Bertinetto, M. Danelljan, M. Dunnhofer, M. Ni, M. Y. Kim, M. Tang, M. H. Yang, N. Paluru, N. Martinel, P. F. Xu, P. F. Zhang, P. K. Zheng, P. Y. Zhang, P. H. S. Torr, Q. Z. Q. Wang, Q. Guo, R. Timofte, R. K. Gorthi, R. Everson, R. Z. Han, R. H. Zhang, S. You, S. C. Zhao, S. W. Zhao, S. H. Li, S. K. Li, S. M. Ge, S. Bai, S. S. Guan, T. F. Xing, T. Y. Xu, T. Y. Yang, T. Zhang, T. Vojir, W. Feng, W. M. Hu, W. Z. Wang, W. J. Tang, W. J. Zeng, W. Y. Liu, X. Chen, X. Qiu, X. Bai, X. J. Wu, X. Y. Yang, X. E. Chen, X. Li, X. Sun, X. Y. Chen, X. M. Tian, X. Tang, X. F. Zhu, Y. Huang, Y. N. Chen, Y. C. Lian, Y. Gu, Y. Liu, Y. J. Chen, Y. Zhang, Y. D. Xu, Y. M. Wang, Y. P. Li, Y. Zhou, Y. Dong, Y. F. Xu, Y. H. Zhang, Y. K. Li, Z. W. Z. Luo, Z. L. Zhang, Z. H. Feng, Z. Y. He, Z. C. Song, Z. H. Chen, Z. P. Zhang, Z. R. Wu, Z. W. Xiong, Z. J. Huang, Z. Teng, Z. H. Ni. The seventh visual object tracking VOT2019 challenge results. In Proceedings of IEEE/CVF International Conference on Computer Vision Workshops, IEEE, Seoul, Korea, pp. 2206–2241, 2019. DOI: https://doi.org/10.1109/ICCVW.2019.00276.

    Google Scholar 

  67. M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, J. K. Kämäräinen, M. Danelljan, L. Č. Zajc, A. Lukežič, O. Drbohlav, L. B. He, Y. S. Zhang, S. Yan, J. Y. Yang, G. Fernández, A. Hauptmann, A. Memarmoghadam, Á. García-Martín, A. Robinson, A. Varfolomieiev, A. H. Gebrehiwot, B. Uzun, B. Yan, B. Li, C. Qian, C. Y. Tsai, C. Micheloni, D. Wang, F. Wang, F. Xie, F. J. Lawin, F. Gustafsson, G. L. Foresti, G. Bhat, G. Q. Chen, H. B. Ling, H. T. Zhang, H. Cevikalp, H. J. Zhao, H. R. Bai, H. C. Kuchibhotla, H. Saribas, H. Fan, H. Ghanei-Yakhdan, H. Q. Li, H. W. Peng, H. C. Lu, H. Li, J. Khaghani, J. Bescos, J. H. Li, J. L. Fu, J. Q. Yu, J. T. Xu, J. Kittler, J. Yin, J. Lee, K. C. Yu, K. W. Liu, K. Yang, K. N. Dai, L. Cheng, L. Zhang, L. J. Wang, L. Y. Wang, L. Van Gool, L. Bertinetto, M. Dunnhofer, M. Cheng, M. M. Dasari, N. Wang, N. Wang, P. Y. Zhang, P. H. S. Torr, Q. Wang, R. Timofte, R. K. S. Gorthi, S. Choi, S. M. Marvasti-Zadeh, S. C. Zhao, S. Kasaei, S. M. Qiu, S. H. Chen, T. B. Schön, T. Y. Xu, W. Lu, W. M. Hu, W. G. Zhou, X. Qiu, X. Ke, X. J. Wu, X. L. Zhang, X. Y. Yang, X. F. Zhu, Y. J. Jiang, Y. M. Wang, Y. W. Chen, Y. Ye, Y. Z. Li, Y. Yao, Y. Lee, Y. Z. Gu, Z. Z. Wang, Z. Y. Tang, Z. H. Feng, Z. J. Mai, Z. P. Zhang, Z. R. Wu, Z. A. Ma. The eighth visual object tracking VOT2020 challenge results. In Proceedings of the European Conference on Computer Vision, Springer, Glasgow, UK, pp. 547–601, 2020. DOI: https://doi.org/10.1007/978-3-030-68238-5_39.

    Google Scholar 

  68. Q. Wang, L. Zhang, L. Bertinetto, W. M. Hu, P. H. S. Torr. Fast online object tracking and segmentation: A unifying approach. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 1328–1338, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00142.

    Google Scholar 

  69. W. H. Zhang, H. R. Wang, Z. J. Huang, Y. X. Li, J. L. Zhou, L. C. Jiao. Accuracy and long-term tracking via overlap maximization integrated with motion continuity. In Proceedings of IEEE/CVF International Conference on Computer Vision Workshops, IEEE, Seoul, Korea, pp. 109–117, 2019. DOI: https://doi.org/10.1109/ICCVW.2019.00019.

    Google Scholar 

  70. S. Choi, J. Lee, Y. S. Lee, A. Hauptmann. Robust long-term object tracking via improved discriminative model prediction. In Proceedings of the European Conference on Computer Vision, Springer, Glasgow, UK, pp. 602–617, 2020. DOI: https://doi.org/10.1007/978-3-030-68238-5_40.

    Google Scholar 

  71. G. Zhu, F. Porikli, H. D. Li. Beyond local search: Tracking objects everywhere with instance-specific proposals. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 943–951, 2016. DOI: https://doi.org/10.1109/CVPR.2016.108.

  72. C. L. Zitnick, P. Dollár. Edge boxes: Locating object proposals from edges. In Proceedings of the 13th European Conference on Computer Vision, Springer, Zurich, Switzerland, pp.391–405, 2014. DOI: https://doi.org/10.1007/978-3-319-10602-1_26.

  73. H. Liu, Q. Y. Hu, B. Li, Y. L. Guo. Robust long-term tracking via instance-specific proposals. IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 4, pp. 950–962, 2020. DOI: https://doi.org/10.1109/TIM.2019.2908715.

    Article  Google Scholar 

  74. D. Q. Sun, X. D. Yang, M. Y. Liu, J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp.8934–8943, 2018. DOI: https://doi.org/10.1109/CVPR.2018.00931.

  75. J. Q. Wang, K. Chen, S. Yang, C. C. Loy, D. H. Lin. Region proposal by guided anchoring, In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp.2960–2969, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00308.

  76. S. Q. Ren, K. M. He, R. Girshick, J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017. DOI: https://doi.org/10.1109/TPAMI.2016.2577031.

    Article  Google Scholar 

  77. I. Jung, J. Son, M. Baek, B. Han. Real-time MDNet. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 89–104, 2018. DOI: https://doi.org/10.1007/978-3-030-01225-0_6.

    Google Scholar 

  78. M. E. Maresca, A. Petrosino. MATRIOSKA: A multi-level approach to fast tracking by learning. In Proceedings of the International Conference on Image Analysis and Processing, Springer, Naples, Italy, pp. 419–428, 2013. DOI: https://doi.org/10.1007/978-3-642-41184-7_43.

    Google Scholar 

  79. J. S. Supancic III, D. Ramanan. Self-paced learning for long-term tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, pp. 2379–2386, 2013. DOI: https://doi.org/10.1109/CVPR.2013.308.

  80. A. Dave, P. Tokmakov, C. Schmid, D. Ramanan. Learning to track any object. [Online], Available: https://arxiv.org/abs/1910.11844, 2019.

  81. K. M. He, G. Gkioxari, P. Dollár, R. Girshick. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386–397, 2020. DOI: https://doi.org/10.1109/TPAMI.2018.2844175.

    Article  Google Scholar 

  82. Z. K. Zhang, B. N. Zhong, S. P. Zhang, Z. J. Tang, X. Liu, Z. X. Zhang. Distractor-aware fast tracking via dynamic convolutions and MOT philosophy. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 1024–1033, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.00108.

    Google Scholar 

  83. L. H. Huang, X. Zhao, K. Q. Huang. GlobalTrack: A simple and strong baseline for long-term tracking. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, pp. 11037–11044, 2020. DOI: https://doi.org/10.1609/aaai.v34i07.6758.

  84. J. Choi, J. Kwon, K. M. Lee. Visual tracking by Trident Align and context embedding. In Proceedings of the 15th Asian Conference on Computer Vision, Springer, Kyoto, Japan, pp. 504–520, 2021. DOI: https://doi.org/10.1007/978-3-030-69532-3_31.

    Google Scholar 

  85. Z. B. Li, Q. Wang, J. Gao, B. Li, W. M. Hu. Globally spatial-temporal perception: A long-term tracking system. In Proceedings of IEEE International Conference on Image Processing, Abu Dhabi, UAE, pp. 2066–2070, 2020. DOI: https://doi.org/10.1109/ICIP40778.2020.9191319.

  86. X. Wang, Z. Chen, J. Tang, B. Luo, Y. W. Wang, Y. H. Tian, F. Wu. Dynamic attention guided multi-trajectory analysis for single object tracking. IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 12, pp. 4895–4908, 2021. DOI: https://doi.org/10.1109/TCSVT.2021.3056684.

    Article  Google Scholar 

  87. Y. Wu, J. Lim, M. H. Yang. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1834–1848, 2015. DOI: https://doi.org/10.1109/TPAMI.2014.2388226.

    Article  Google Scholar 

  88. M. Kristan, J. Matas, A. Leonardis, M. Felsberg, R. Pflugfelder, J. K. Kämäräinen, H. J. Chang, M. Danelljan, L. Č. Zajc, A. Lukežič, O. Drbohlav, J. Käpylä, G. Häger, S. Yan, J. Y. Yang, Z. Q. Zhang, G. Fernández, M. Abdelpakey, G. Bhat, L. Cerkezi, H. Cevikalp, S. Y. Chen, X. Chen, M. Cheng, Z. Y. Cheng, Y. C. Chiu, O. Cirakman, Y. T. Cui, K. N. Dai, M. M. Dasari, Q. Deng, X. P. Dong, D. K. Du, M. Dunnhofer, Z. H. Feng, Z. Y. Feng, Z. H. Fu, S. M. Ge, R. K. Gorthi, Y. Z. Gu, B. Gunsel, Q. Guo, F. Gurkan, W. C. Han, Y. Y. Huang, F. J. Lawin, S. J. Jhang, R. G. Ji, C. Jiang, Y. J. Jiang, F. Juefei-Xu, Y. Jun, X. Ke, F. S. Khan, B. H. Kim, J. Kittler, X. Y. Lan, J. H. Lee, B. Leibe, H. Li, J. H. Li, X. X. Li, Y. Z. Li, B. Liu, C. Liu, J. G. Liu, L. Liu, Q. J. Liu, H. C. Lu, W. Lu, J. Luiten, J. Ma, Z. Ma, N. Martinel, C. Mayer, A. Memarmoghadam, C. Micheloni, Y. Z. Niu, D. Paudel, H. W. Peng, S. M. Qiu, A. Rajiv, M. Rana, A. Robinson, H. Saribas, L. Shao, M. Shehata, F. Shen, J. B. Shen, K. Simonato, X. N. Song, Z. Y. Tang, R. Timofte, P. Torr, C. Y. Tsai, B. Uzun, L. Van Gool, P. Voigtlaender, D. Wang, G. T. Wang, L. L. Wang, L. J. Wang, L. M. Wang, L. Y. Wang, Y. Wang, Y. H. Wang, C. Y. Wu, G. S. Wu, X. J. Wu, F. Xie, T. Y. Xu, X. Xu, W. L. Xue, B. Yan, W. K. Yang, X. Y. Yang, Y. Ye, J. Yin, C. W. Zhang, C. H. Zhang, H. T. Zhang, K. H. Zhang, K. K. Zhang, X. H. Zhang, X. L. Zhang, X. Y. Zhang, Z. B. Zhang, S. C. Zhao, M. Zhen, B. N. Zhong, J. W. Zhu, X. F. Zhu. The ninth visual object tracking VOT2021 challenge results. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 2711–2738, 2021. DOI: https://doi.org/10.1109/ICCVW54120.2021.00305.

    Google Scholar 

  89. H. Fan, L. T. Lin, F. Yang, P. Chu, G. Deng, S. J. Yu, H. X. Bai, Y. Xu, C. Y. Liao, H. B. Ling. LaSOT: A high-quality benchmark for large-scale single object tracking. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 5369–5378, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00552.

    Google Scholar 

  90. M. Müller, A. Bibi, S. Giancola, S. Alsubaihi, B. Ghanem. TrackingNet: A large-scale dataset and benchmark for object tracking in the wild. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 310–327, 2018. DOI: https://doi.org/10.1007/978-3-030-01246-5_19.

    Google Scholar 

  91. P. Y. Zhang, J. Zhao, D. Wang, H. C. Lu, X. Ruan. Visible-thermal UAV tracking: A large-scale benchmark and new baseline. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022.

  92. T. Y. Yang, A. B. Chan. Learning dynamic memory networks for object tracking. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 153–169, 2018. DOI: https://doi.org/10.1007/978-3-030-01240-3_10.

    Google Scholar 

  93. Z. D. Wang, H. S. Zhao, Y. L. Li, S. J. Wang, P. H. S. Torr, L. Bertinetto. Do different tracking tasks require different appearance models? In Proceedings of the 35th Conference on Neural Information Processing Systems, pp. 726–738, 2021.

  94. A. Bewley, Z. Y. Ge, L. Ott, F. Ramos, B. Upcroft. Simple online and realtime tracking. In Proceedings of IEEE International Conference on Image Processing, Phoenix, USA, pp. 3464–3468, 2016. DOI: https://doi.org/10.1109/ICIP.2016.7533003.

  95. N. Wojke, A. Bewley, D. Paulus. Simple online and real-time tracking with a deep association metric. In Proceedings of IEEE International Conference on Image Processing, Beijing, China, pp. 3645–3649, 2017. DOI: https://doi.org/10.1109/ICIP.2017.8296962.

  96. Y. F. Zhang, C. Y. Wang, X. G. Wang, W. J. Zeng, W. Y. Liu. FairMOT: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision, vol. 129, no. 11, pp. 3069–3087, 2021. DOI: https://doi.org/10.1007/s11263-021-01513-4.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 62176041 and 62022021), Joint Fund of Ministry of Education for Equipment Pre-research, China (No. 8091B032155), the Science and Technology Innovation Foundation of Dalian, China (No. 2020 JJ26GX036), and the Fundamental Research Funds for the Central Universities, China (No. DUT21LAB127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Additional information

Chang Liu received the B. Eng. degree in communication engineering from Dalian University of Technology, China in 2019. She is currently a Ph. D. candidate in signal and information processing at School of Information and Communication Engineering, Dalian University of Technology, China.

Her research direction is visual object tracking.

Xiao-Fan Chen received the B. Eng. degree in computer science from Dalian University of Technology, China in 2017. She is currently a master student in signal and information processing at School of Information and Communication Engineering, Dalian University of Technology, China.

Her research direction is visual object tracking.

Chun-Juan Bo received the Ph. D. degree in signal and information processing from Dalian University of Technology, China in 2019. She is currently an associate professor with College of Information and Communication Engineering, Dalian Minzu University, China.

Her research interests include image classification and object tracking.

Dong Wang received the B. Eng. degree in electronic information engineering and the Ph. D. degree in signal and information processing from Dalian University of Technology (DUT), China in 2008 and 2013, respectively. He is currently a full professor with School of Information and Communication Engineering, DUT, China.

His research interests focuses on object detection and tracking.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chen, XF., Bo, CJ. et al. Long-term Visual Tracking: Review and Experimental Comparison. Mach. Intell. Res. 19, 512–530 (2022). https://doi.org/10.1007/s11633-022-1344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-022-1344-1

Keywords

Navigation