Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Image Encryption Algorithm Based on Compressive Sensing and Fractional DCT via Polynomial Interpolation

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

Based on compressive sensing and fractional discrete cosine transform (DCT) via polynomial interpolation (PI-FrDCT), an image encryption algorithm is proposed, in which the compression and encryption of an image are accomplished simultaneously. It can keep information secret more effectively with low data transmission. Three-dimensional piecewise and nonlinear chaotic maps are employed to obtain a generating sequence and the exclusive OR (XOR) matrix, which greatly enlarge the key space of the encryption system. Unlike many other fractional transforms, the output of PI-FrDCT is real, which facilitates the storage, transmission and display of the encrypted image. Due to the introduction of a plain-image-dependent disturbance factor, the initial values and system parameters of the encryption scheme are determined by cipher keys and plain-image. Thus, the proposed encryption scheme is very sensitive to the plain-image, which makes the encryption system more secure. Experimental results demonstrate the validity and the reliability of the proposed encryption algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. G. H. Situ, J. J. Zhang. A cascaded iterative Fourier transform algorithm for optical security applications. Optik–International Journal for Light and Electron Optics, vol. 114, no. 10, pp. 473–477, 2003. DOI: 10.1078/0030-4026-00291.

    Google Scholar 

  2. X. G. Wang, D. M. Zhao. Multiple-image encryption based on nonlinear amplitude-truncation and phase-truncation in Fourier domain. Optics Communications, vol. 284, no. 1, pp. 148–152, 2011. DOI: 10.1016/j.optcom.2010.09.034.

    Google Scholar 

  3. M. H. Annaby, M. A. Rushdi, E. A. Nehary. Image encryption via discrete fractional Fourier-type transforms generated by random matrices. Signal Processing: Image Communication, vol. 49, pp. 25–46, 2016. DOI: 10.1016/j.image.2016.09.006.

    Google Scholar 

  4. L. S. Sui, K. K. Duan, J. L. Liang, Z. Q. Zhang, H. N. Meng. Asymmetric multiple-image encryption based on coupled logistic maps in fractional Fourier transform domain. Optics and Lasers in Engineering, vol. 62, pp. 139–152, 2014. DOI: 10.1016/j.optlaseng.2014.06.003.

    Google Scholar 

  5. L. S. Sui, M. J. Xu, A. L. Tian. Optical noise-free image encryption based on quick response code and high dimension chaotic system in gyrator transform domain. Optics and Lasers in Engineering, vol. 91, pp. 106–114, 2017. DOI: 10.1016/j.optlaseng.2016.11.017.

    Google Scholar 

  6. Z. J. Liu, M. A. Ahmad, S. T. Liu. Image encryption based on double random amplitude coding in random Hartley transform domain. Optik–International Journal for Light and Electron Optics, vol. 121, no. 11, pp. 959–964, 2010. DOI: 10.1016/j.ijleo.2008.12.006.

    Google Scholar 

  7. S. M. Pan, R. H. Wen, Z. H. Zhou, N. R. Zhou. Optical multi-image encryption scheme based on discrete cosine transform and nonlinear fractional Mellin transform. Multimedia Tools and Applications, vol. 76, no. 2, pp. 2933–2953, 2017. DOI: 10.1007/s11042-015-3209-x.

    Google Scholar 

  8. N. R. Zhou, J. P. Yang, C. F. Tan, S. M. Pan, Z. H. Zhou. Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform. Optics Communications, vol. 354, pp. 112–121, 2015. DOI: 10.1016/j.optcom.2015.05.043.

    Google Scholar 

  9. G. Unnikrishnan, J. Joseph, K. Singh. Optical encryption by double-random phase encoding in the fractional Fourier domain. Optics Letters, vol. 25, no. 12, pp. 887–889, 2000. DOI: 10.1364/OL.25.000887.

    Google Scholar 

  10. R. Tao, J. Lang, Y. Wang. Optical image encryption based on the multiple-parameter fractional Fourier transform. Optics Letters, vol. 33, no. 6, pp. 581–583, 2008. DOI: 10.1364/OL.33.000581.

    Google Scholar 

  11. Y. P. Li, C. H. Wang, H. Chen. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Optics and Lasers in Engineering, vol. 90, pp. 238–246, 2017. DOI: 10.1016/j.optlaseng. 2016.10.020.

    Google Scholar 

  12. Z. Parvin, H. Seyedarabi, M. Shamsi. A new secure and sensitive image encryption scheme based on new substitution with chaotic function. Multimedia Tools and Applications, vol. 75, no. 17, pp. 10631–10648, 2016. DOI: 10. 1007/s11042-014-2115-y.

    Google Scholar 

  13. R. Enayatifar, A. H. Abdullah, I. F. Isnin, A. Altameem, M. Lee. Image encryption using a synchronous permutation-diffusion technique. Optics and Laser Technology, vol. 90, pp. 146–154, 2017. DOI: 10.1016/j.optlaseng.2016. 10.006.

    Google Scholar 

  14. T. G. Gao, Z. Q. Chen. A new image encryption algorithm based on hyper-chaos. Physics Letters A, vol. 372, no. 4, pp. 394–400, 2008. DOI: 10.1016/j.physleta.2007.07.040.

    MATH  Google Scholar 

  15. W. Zhang, K. W. Wong, H. Yu, Z. L. Zhu. An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion. Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 8, pp. 2066–2080, 2013. DOI: 10.1016/j.cnsns.2012.12.012.

    MathSciNet  MATH  Google Scholar 

  16. I. Venturini, P. Duhamel. Reality preserving fractional transforms. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, vol. 5, pp. 205–208, 2004.

    Google Scholar 

  17. J. Lang. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform. Optics Communications, vol. 285, no. 10–11, pp. 2584–2590, 2012. DOI: 10.1016/j.optcom.2012.01.085.

    Google Scholar 

  18. N. R. Zhou, Y. X. Wang, L. H. Gong, X. B. Chen, Y. X. Yang. Novel color image encryption algorithm based on the reality preserving fractional Mellin transform. Optics & Laser Technology, vol. 44, no. 7, pp. 2270–2281, 2012. DOI: 10.1016/j.optlastec.2012.02.027.

    Google Scholar 

  19. Z. J. Liu, Y. Zhang, H. F. Zhao, M. A. Ahmad, S. T. Liu. Optical multi-image encryption based on frequency shift. Optik–International Journal for Light and Electron Optics, vol. 122, no. 11, pp. 1010–1013, 2011. DOI: 10.1016/j. ijleo.2010.06.039.

    Google Scholar 

  20. E. J. Candès. Compressive sampling. In Proceedings of the International Congress of Mathematics, Madrid, Spain, pp. 1433–1452, 2006.

    Google Scholar 

  21. E. J. Candès, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006. DOI: 10.1109/TIT.2005.862083.

    MathSciNet  MATH  Google Scholar 

  22. D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. DOI: 10.1109/TIT.2006.871582.

    MathSciNet  MATH  Google Scholar 

  23. R. Huang, K. Sakurai. A robust and compression-combined digital image encryption method based on compressive sensing. In Proceedings of the 7th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Dalian, China, pp. 105–108, 2011. DOI: 10.1109/IIHMSP.2011.53.

    Google Scholar 

  24. Y. Rachlin, D. Baron. The secrecy of compressed sensing measurements. In Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Urbana, USA, pp. 813–817, 2008. DOI: 10.1109/ALLERTON.2008.4797641.

    Google Scholar 

  25. M. R. Mayiami, B. Seyfe, H. G. Bafghi. Perfect secrecy via compressed sensing. In Proceedings of Iran Workshop on Communication and Information Theory, Tehran, Iran, pp. 1–5, 2013. DOI: 10.1109/IWCIT.2013.6555751.

    Google Scholar 

  26. P. Lu, Z. Y. Xu, X. Lu, X. Y. Liu. Digital image information encryption based on compressive sensing and double random-phase encoding technique. Optik–International Journal for Light and Electron Optics, vol. 124, no. 16, pp. 2514–2518, 2013. DOI: 10.1016/j.ijleo.2012.08.017.

    Google Scholar 

  27. G. Q. Hu, D. Xiao, Y. Wang, T. Xiang. An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications. Journal of Visual Communication and Image Representation, vol. 44, pp. 116–127, 2017. DOI: 10.1016/j.jvcir.2017.01.022.

    Google Scholar 

  28. C. Feng, L. Xiao, Z. H. Wei. Compressive sensing inverse synthetic aperture radar imaging based on gini index regularization. International Journal of Automation and Computing, vol. 11, no. 4, pp. 441–448, 2014. DOI: 10.1007/s11633-014-0811-8.

    Google Scholar 

  29. E. J. Candès. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, vol. 346, no. 9–10, pp. 589–592, 2008. DOI: 10. 1016/j.crma.2008.03.014.

    MathSciNet  MATH  Google Scholar 

  30. B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995. DOI: 10.1137/S0097539792240406.

    MathSciNet  MATH  Google Scholar 

  31. S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61, 1998. DOI: 10.1137/S1064827596304010.

    MathSciNet  MATH  Google Scholar 

  32. Y. Zhang, Y. Y. Wang, C. Zhang. Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction. Ultrasonics, vol. 52, no. 8, pp. 1046–1055, 2012. DOI: 10.1016/j.ultras.2012.08.012.

    MathSciNet  Google Scholar 

  33. S. G. Mallat, Z. F. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993. DOI: 10.1109/78.258082.

    MATH  Google Scholar 

  34. E. T. Liu, V. N. Temlyakov. The orthogonal super greedy algorithm and applications in compressed sensing. IEEE Transactions on Information Theory, vol. 58, no. 4, pp. 2040–2047, 2012. DOI: 10.1109/TIT.2011.2177632.

    MathSciNet  MATH  Google Scholar 

  35. H. Mohimani, M. Babaie-Zadeh, C. Jutten. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 289–301, 2009. DOI: 10.1109/TSP.2008.2007606.

    MathSciNet  MATH  Google Scholar 

  36. G. Cariolaro, T. Erseghe, P. Kraniauskas. The fractional discrete cosine transform. IEEE Transactions on Signal Processing, vol. 50, no. 4, pp. 902–911, 2002. DOI: 10.1109/78.992138.

    MathSciNet  MATH  Google Scholar 

  37. J. H. Wu, F. F. Guo, P. P. Zeng, N. R. Zhou. Image encryption based on a reality-preserving fractional discrete cosine transform and a chaos-based generating sequence. Journal of Modern Optics, vol. 60, no. 20, pp. 1760–1771, 2013. DOI: 10.1080/09500340.2013.858189.

    Google Scholar 

  38. Y. R. Liang, G. P. Liu, N. R. Zhou, J. H. Wu. Image encryption combining multiple generating sequences controlled fractional DCT with dependent scrambling and diffusion. Journal of Modern Optics, vol. 62, no. 4, pp. 251–264, 2014. DOI: 10.1080/09500340.2014.964342.

    Google Scholar 

  39. Y. R. Liang, J. H. Wu. New image encryption combining fractional DCT via polynomial interpolation with dependent scrambling and diffusion. Journal of China Universities of Posts and Telecommunications, vol. 22, no. 5, pp. 1–9, 2015. DOI: 10.1016/S1005-8885(15)60673-2.

    MathSciNet  Google Scholar 

  40. A. Akhshani, S. Behnia, A. Akhavan, H. Abu Hassan, Z. Hassan. A novel scheme for image encryption based on 2D piecewise chaotic maps. Optics Communications, vol. 283, no. 17, pp. 3259–3266, 2010. DOI: 10.1016/j.optcom.2010. 04.056.

    Google Scholar 

  41. N. R. Zhou, A. D. Zhang, J. H. Wu, D. J. Pei, Y. X. Yang. Novel hybrid image compression-encryption algorithm based on compressive sensing. Optik–International Journal for Light and Electron Optics, vol. 125, no. 18, pp. 5075–5080, 2014. DOI: 10.1016/j.ijleo.2014.06.054.

    Google Scholar 

  42. A. S. Arumugam, D. N. Krishnan. Biometric encryption and bio-fusion authentication using combined Arnold transition and permutation matrices. International Journal of Engineering Science and Technology, vol. 2, no. 10, pp. 5357–5369, 2010.

    Google Scholar 

  43. V. Patidar, N. K. Pareek, G. K. Purohit, K. K. Sud. A robust and secure chaotic standard map based pseudorandom permutation-substitution scheme for image encryption. Optics Communications, vol. 284, no. 19, pp. 4331–4339, 2011. DOI: 10.1016/j.optcom.2011.05.028.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 61662047 and 61462061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Yong Xiao.

Additional information

Recommended by Associate Editor Zhi-Jie Xu

Ya-Ru Liang received the B. Sc. degree in automation from Heilongjiang Institute of Technology, China in 2002, the M. Sc. degree in power electronics and power drives from Shenyang University of Technology, China in 2008, and the Ph. D. degree in mechanical engineering from Nanchang University, China in 2016. Currently, she is a lecturer in Department of Electronic Information Engineering, Jiangxi Agricultural University, China.

Her research interests include image processing, image encryption and information security.

Zhi-Yong Xiao received the B. Sc. degree in electronic information engineering from Nanchang Hangkong University, China in 2001, and the M. Sc. degree in control theory and engineering from East China University of Technology, China in 2008. He is a Ph. D. degree candidate in mechanical engineering at School of Mechatronic Engineering, Nanchang University, China.

His research interests include image processing, computer vision and pattern recognition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YR., Xiao, ZY. Image Encryption Algorithm Based on Compressive Sensing and Fractional DCT via Polynomial Interpolation. Int. J. Autom. Comput. 17, 292–304 (2020). https://doi.org/10.1007/s11633-018-1159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-018-1159-2

Keywords

Navigation