Abstract
We consider the strongly convergent modified versions of the Krasnosel’skiĭ-Mann, the forward-backward and the Douglas-Rachford algorithms with Tikhonov regularization terms, introduced by Radu Boţ, Ernö Csetnek and Dennis Meier. We obtain quantitative information for these modified iterations, namely rates of asymptotic regularity and metastability. Furthermore, our arguments avoid the use of sequential weak compactness and use only a weak form of the projection argument.
Similar content being viewed by others
Notes
The standard definition asks for \(\alpha \in (0,1)\). With this extension, 1-averaged is just another way of saying nonexpansive.
References
Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9467-7. With a foreword by Hédy Attouch
Bezem, M.: Strongly majorizable functionals of finite type: a model for barrecursion containing discontinuous functionals. J. Symb. Log. 50(3), 652–660 (1985)
Boţ, R.I., Csetnek, E.R., Meier, D.: Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces. Optim. Methods Softw. 34(3), 489–514 (2019). https://doi.org/10.1080/10556788.2018.1457151
Dinis, B., Pinto, P.: Metastability of the proximal point algorithm with multi-parameters. (submitted) arXiv:1906.09129v2
Dinis, B., Pinto, P.: Quantitative results on the multi-parameters proximal point algorithm. (To appear in Journal of Convex Analysis)
Ferreira, F., Leuştean, L., Pinto, P.: On the removal of weak compactness arguments in proof mining. Adv. Math. 354, 106728 (2019). https://doi.org/10.1016/j.aim.2019.106728
Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and Their Use in Mathematics. Springer Monographs in Mathematics. Springer, Berlin (2008)
Kohlenbach, U.: On quantitative versions of theorems due to F. E. Browder and R. Wittmann. Adv. Math. 226(3), 2764–2795 (2011). https://doi.org/10.1016/j.aim.2010.10.002
Kohlenbach, U.: Recent progress in proof mining in nonlinear analysis. IFCoLog J. Logics Appl. 10, 3357–3406 (2017)
Kohlenbach, U.: Proof-theoretic methods in nonlinear analysis. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, pp. 61–82. World Sci. Publ., Hackensack, NJ (2018)
Lehdili, N., Moudafi, A.: Combining the proximal algorithm and tikhonov regularization. Optimization 37(3), 239–252 (1996). https://doi.org/10.1080/02331939608844217
Leuştean, L., Pinto, P.: Quantitative results on Halpern type proximal point algorithms. (submitted) arXiv:2001.10040v2
Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche Opérationnelle 4, 154–158 (1970)
Ogura, N., Yamada, I.: Non-strictly convex minimization over the fixed point set of an asymptotically shrinking nonexpansive mapping. Numer. Funct. Anal. Optim. 23(1–2), 113–137 (2002). https://doi.org/10.1081/NFA-120003674
Pinto, P.: A rate of metastability for the Halpern type Proximal Point Algorithm. (submitted) arXiv:1912.12468
Rockafellar, R.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976). https://doi.org/10.1137/0314056
Acknowledgements
Both authors acknowledge the support of FCT - Fundação para a Ciência e Tecnologia under the projects: UIDB/04561/2020 and UIDP/04561/2020, and the research center Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Universidade de Lisboa. The second author also acknowledges the support of the ‘Future Talents’ short-term scholarship at Technische Universität Darmstadt. The authors also like to thank the suggestions made by the anonymous referees.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Dinis, B., Pinto, P. On the convergence of algorithms with Tikhonov regularization terms. Optim Lett 15, 1263–1276 (2021). https://doi.org/10.1007/s11590-020-01635-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-020-01635-7