Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A multi-objective parallel variable neighborhood search for the bi-objective obnoxious p-median problem

  • OriginalPaper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Researchers and practitioners have addressed many variants of facility locations problems. Each location problem can be substantially different from each other depending on the objectives and/or constraints considered. In this paper, the bi-objective obnoxious p-median problem (Bi-OpM) is addressed given the huge interest to locate facilities such as waste or hazardous disposal facilities, nuclear power or chemical plants and noisy or polluting services, among others. The Bi-OpM aims to locate p facilities maximizing two different objectives: the distance between each customer and their nearest facility center and the dispersion among facilities. To address the Bi-OpM problem a Multi-objective Parallel Variable Neighborhood Search approach (Mo-PVNS) is implemented. Computational results indicate the superiority of the Mo-PVNS compared to the state-of-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlsson, J.G., Jia, F.: Continuous facility location with backbone network costs. Transp. Sci. 49(3), 433–451 (2014)

    Article  Google Scholar 

  2. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer, New York (2006)

    MATH  Google Scholar 

  3. Colmenar, J.M., Greistorfer, P., Martí, R., Duarte, A.: Advanced greedy randomized adaptive search procedure for the obnoxious p-median problem. Eur. J. Oper. Res. 252(2), 432–442 (2016)

    Article  MathSciNet  Google Scholar 

  4. Colmenar, J.M., Martí, R., Duarte, A.: Multi-objective memetic optimization for the bi-objective obnoxious p-median problem. Knowl.-Based Syst. 144, 88–101 (2018)

    Article  Google Scholar 

  5. Cornuéjols, G., Nemhauser, G., Wolsey, L.: The uncapacitated facility location problem. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory, pp. 119–171. Wiley, New York (1990)

    Google Scholar 

  6. Crainic, T.G., Gendreau, M., Hansen, P., Mladenović, N.: Cooperative parallel variable neighborhood search for the p-median. J. Heuristics 10(3), 293–314 (2004)

    Article  Google Scholar 

  7. Dantrakul, S., Likasiri, C., Pongvuthithum, R.: Applied p-median and p-center algorithms for facility location problems. Expert Syst. Appl. 41(8), 3596–3604 (2014)

    Article  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Drezner, Z., Brimberg, J., Mladenović, N., Salhi, S.: Solving the planar p-median problem by variable neighborhood and concentric searches. J. Global Optim. 63(3), 501–514 (2015)

    Article  MathSciNet  Google Scholar 

  10. Duarte, A., Pantrigo, J., Pardo, E., Sánchez-Oro, J.: Parallel variable neighbourhood search strategies for the cutwidth minimization problem. IMA J. Manag. Math. 27(1), 55 (2016)

    Article  MathSciNet  Google Scholar 

  11. Duarte, A., Pantrigo, J.J., Pardo, E.G., Mladenovic, N.: Multi-objective variable neighborhood search: an application to combinatorial optimization problems. J. Global Optim. 63(3), 515–536 (2015)

    Article  MathSciNet  Google Scholar 

  12. Durillo, J., Nebro, A.: Jmetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)

    Article  Google Scholar 

  13. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global Optim. 6(2), 109–133 (1995)

    Article  MathSciNet  Google Scholar 

  14. García-López, F., Melian, B., Moreno-Pérez, J., Moreno-Vega, J.: The parallel variable neighborhood search for the p-median problem. J. Heuristics 8, 375–388 (2002)

    Article  Google Scholar 

  15. Geiger, M.J.: Randomised variable neighbourhood search for multi objective optimisation. arXiv preprint arXiv:0809.0271 (2008)

  16. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2017)

    Article  MathSciNet  Google Scholar 

  17. Irawan, C.A., Salhi, S.: Solving large p-median problems by a multistage hybrid approach using demand points aggregation and variable neighbourhood search. J. Global Optim. 63(3), 537–554 (2015)

    Article  MathSciNet  Google Scholar 

  18. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

  19. Marín, A.: The discrete facility location problem with balanced allocation of customers. Eur. J. Oper. Res. 210(1), 27–38 (2011)

    Article  MathSciNet  Google Scholar 

  20. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

  21. Sánchez-Oro, J., Sevaux, M., Rossi, A., Martí, R., Duarte, A.: Solving dynamic memory allocation problems in embedded systems with parallel variable neighborhood search strategies. Electron. Notes Dis. Math. 47, 85–92 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sánchez-Oro, J., Laguna, M., Duarte, A., Martí, R.: Scatter search for the profile minimization problem. Networks 65(1), 10–21 (2015)

    Article  MathSciNet  Google Scholar 

  23. Wu, L.Y., Zhang, X.S., Zhang, J.L.: Capacitated facility location problem with general setup cost. Comput. Oper. Res. 33(5), 1226–1241 (2006)

  24. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evolutionary algorithm. Technical report (2001)

  25. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: K. Giannakoglou, et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE) (2002)

Download references

Acknowledgements

Ana D. López-Sánchez acknowledges support from the Spanish Ministerio de Economía, Industria y Competitividad through Grant Number ECO2016-76567-C4-1-R. Jesús Sánchez-Oro and J. Manuel Colmenar acknowledge support from the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU / AEI / FEDER, UE) under Grant Ref. PGC2018-095322-B-C22, and Comunidad de Madrid y Fondos Estructurales de la Unión Europea with Grant Ref. P2018/TCS-4566.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manuel Colmenar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we provide a breakdown of results for each algorithm and instance on all the metrics we have shown in the paper (See Tables 9, 10, 11, 12, 13, 14, 15).

Table 9 Number of efficient solutions obtained for each algorithm on each instance
Table 10 Hypervolume value of the final set of non-dominated solutions for each algorithm on each instance
Table 11 Coverage measure of the final set of non-dominated solutions for each algorithm on each instance
Table 12 \(\epsilon \) indicator of the final set of non-dominated solutions for each algorithm on each instance
Table 13 Generational Distance of the final set of non-dominated solutions for each algorithm on each instance
Table 14 \(\varDelta \) Generalized Spread of the final set of non-dominated solutions for each algorithm on each instance
Table 15 Execution time (in sec) of the final set of non-dominated solutions for each algorithm on each instance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Oro, J., López-Sánchez, A.D. & Colmenar, J.M. A multi-objective parallel variable neighborhood search for the bi-objective obnoxious p-median problem. Optim Lett 16, 301–331 (2022). https://doi.org/10.1007/s11590-020-01690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01690-0

Keywords

Navigation