Abstract
We present a new theorem to lift facets of the vertex packing problem. We prove the result and analyse its implications, showing that it generalizes a previous lifting theorem that was proved in 1983. The theorem is illustrated with some examples. Finally, we introduce two new families of facet-defining graphs that can be obtained as a consequence of this new lifting.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Balas, E., Padberg, M.W.: Set partitioning: a survey. SIAM Rev. 18(4), 710–760 (1976)
Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. Handb. of Comb. Optim., pp. 1–74. Springer, New York (1999)
Cornaz, D., Jost, V.: A one-to-one correspondence between colorings and stable sets. Oper. Res. Lett. 36(6), 673–676 (2008)
Escudero, L.F., Landete, M., Marín, A.: A branch-and-cut algorithm for the winner determination problem. Decis. Support Syst. 46, 649–659 (2009)
Cho, D.C., Padberg, M.W., Rao, M.R.: On the uncapacitated plant location problem II: facets and lifting theorems. Math. Oper. Res. 8(4), 590–612 (1983)
Cánovas, L., Landete, M., Marín, A.: On the facets of the simple plant location packing polytope. Discrete Appl. Math. 124(1), 27–53 (2002)
Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)
Nemhauser, G.L., Trotter, L.E.: Properties of vertex packing and independence system polyhedra. Math. Program. 6, 48–61 (1974)
Padberg, M.W.: A note on zero-one programming. Oper. Res. 23, 833–837 (1975)
Landete, M.: Obtención de facetas de poliedros asociados a problemas de empaquetamiento. PhD Thesis, University of Murcia (2001)
Padberg, M.W.: On the complexity of set packing polyhedra. Ann. Discret. Math. 1, 421–434 (1977)
Wolsey, L.A.: Further facet generating procedures for vertex packing polytopes. Math. Program. 11, 158–163 (1976)
Barahona, F., Mahjoub, A.R.: Compositions of graphs and polyhedra II: stable sets. SIAM J. Discrete Math. 7(3), 359–371 (1994)
Galluccio, A., Gentile, C., Ventura, P.: Gear composition and the stable set polytope. Oper. Res. Lett. 36(4), 419–423 (2008)
Xavier, Á.S., Campêlo, M.: A new facet generating procedure for the stable set polytope. Electron. Notes Discrete Math. 37, 183–188 (2011)
Trotter, L.E.: A class of facet-producing graphs for vertex packing polyhedra. Discret. Math. 12, 373–388 (1975)
Cheng, E., Cunningham, W.H.: Wheel inequalities for stable set polytopes. Math. Program. 77, 389–421 (1997)
Cánovas, L., Landete, M., Marín, A.: New facets for the set packing polytope. Oper. Res. Lett. 27, 153–161 (2000)
Cánovas, L., Landete, M., Marín, A.: Facet obtaining procedures for set packing problems. SIAM J. Discrete Math. 16(1), 127–155 (2002)
Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory 18, 138–154 (1975)
Barahona, F., Mahjoub, A.R.: Compositions of graphs and polyhedra III: graphs with no \(W_4\) minor. SIAM J. Discrete Math. 7(3), 372–389 (1994)
Dahl, G.: Stable set polytopes for a class of circulant graphs. SIAM J. Optim. 9, 493–503 (1999)
Liebling, T.M., Oriolo, G., Spille, B., Stauffer, G.: On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs. Math. Methods Oper. Res. 59, 25–35 (2004)
Galluccio, A., Gentile, C., Ventura, P.: On the stable set polytope of claw-free graphs. In: Yang, B., Du, D.Z., Wang, C.A. (eds.) Combinatorial Optimization and Applications, pp. 339–350. Springer, Berlin (2008)
Pêcher, A., Wagler, A.K.: Almost all webs are not rank-perfect. Math. Program. 105(2), 311–328 (2006)
Pêcher, A., Wagler, A.K.: A construction for non-rank facets of stable set polytopes of webs. Eur. J. Comb. 27(7), 1172–1185 (2006)
Stauffer, G.: On the facets of the stable set polytope of quasi-line graphs. Oper. Res. Lett. 39(3), 208–212 (2011)
Silvester, J.R.: Determinants of block matrices. The Math. Gaz. 84(501), 460–467 (2000)
Acknowledgements
Research supported by Spanish Ministerio de Economía y Competitividad, project MTM2015-65915-R, Ministerio de Educación, Cultura y Deporte, PhD Grant FPU15/05883, Fundación Séneca de la Consejería de Educación de la Comunidad Autónoma de la Región de Murcia, project 19320/PI/14 and Fundación BBVA, project FUNDBBVA/016/005.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marín, A., Pelegrín, M. A new lifting theorem for vertex packing. Optim Lett 13, 1299–1312 (2019). https://doi.org/10.1007/s11590-018-1312-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-018-1312-4