Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Saddle representations of positively homogeneous functions by linear functions

  • Short Communication
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We say that a positively homogeneous function admits a saddle representation by linear functions iff it admits both an inf-sup-representation and a sup-inf-representation with the same two-index family of linear functions. In the paper we show that each continuous positively homogeneous function can be associated with a two-index family of linear functions which provides its saddle representation. We also establish characteristic properties of those two-index families of linear functions which provides saddle representations of functions belonging to the subspace of Lipschitz continuous positively homogeneous functions as well as the subspaces of difference sublinear and piecewise linear functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Demyanov, V.F., Rubinov, A.M.: Foundations of Nonsmooth Analysis and Quasidifferential Calculus. Nauka, Moscow (1990). (in Russian)

    Google Scholar 

  2. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Verlag Peter Lang, Frankfurt am Main (1995)

    MATH  Google Scholar 

  3. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  4. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. II: Applications. Springer, Berlin (2006)

    Google Scholar 

  5. Pallaschke, D., Rolewicz, S.: Foundations of Mathematical Optimization. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  6. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  7. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)

    Book  Google Scholar 

  8. Bagirov, A., Karmitsa, N., Makela, M.: Intoduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  9. Rubinov, A.M., Glover, B.M.: Characterizations of optimality for homogeneous programming problems with applications. In: Du, D.-Z., Qi, L., Womersley, R.S. (eds.) Recent Advances in Nonsmooth Optimization, pp. 351–380. World Science Publishers, River Edge, New Jersey (1995)

    Chapter  Google Scholar 

  10. Lasserre, J.B., Hiriart-Urruty, J.B.: Mathematical properties of of optimization problems defined by positively homogeneous functions. J. Optim. Theory Appl. 112(1), 31–52 (2002)

    Article  MathSciNet  Google Scholar 

  11. Demyanov, V.F.: Exhausters of a positively homogeneous function. Optimization 45, 13–29 (1999)

    Article  MathSciNet  Google Scholar 

  12. Demyanov, V.F.: Exhausters and convexificators—new tools in nonsmooth analysis. In: Demyanov, V.F., Rubinov, A.M. (eds.) Quasidifferentiability and Related Topics, pp. 85–137. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  13. Castellani, M.: A dual representation for proper positively homogeneous functions. J. Glob. Optim. 16(4), 393–400 (2000)

    Article  MathSciNet  Google Scholar 

  14. Castellani, M.: Dual representation of classes of positively homogeneous functions. In: Demyanov, V.F., Rubinov, A.M. (eds.) Quasidifferentiability and Related Topics, pp. 73–84. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  15. Castellani, M., Uderzo, A.: Dual representations for positively homogeneous functions: an application to constrained extremum problems. In: Crespi, G.P. et al (eds.) Optimization in Exonomics, Finance and Industry. Proceedings of the Workshop, hold in Verona, June14/15th 2001, pp. 129–143. Datanova (2001)

  16. Gorokhovik, V.V., Starovoitava, M.A.: Characteristic properties of primal exhausters for various classes of positively homogeneous functions (in Russian). In: Proceedings of the Institute of Mathematics. National Academy of Sciences of Belarus vol 19, no 2, pp. 12–25 (2011)

  17. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, Vol. I. Fundamentals. Springer, Berlin (1993)

    MATH  Google Scholar 

  18. Bourbaki, N.: General Topology, Chapter 5–10. Springer, Berlin (1989)

    MATH  Google Scholar 

  19. Demyanov, V.F. (ed.): Nonsmooth Problems in the Theory of Optimization and Control. Leningrad University Press, Leningrad (1982). (in Russian)

    Google Scholar 

  20. Uderzo, A.: Convex approximators, convexificators and exhausters: applications to constrained extremum problems. In: Demyanov, V.F., Rubinov, A.M. (eds.) Quasidifferentiability and Related Topics, pp. 297–327. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  21. Gorokhovik, V.V.: On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions (in Russian). Trudy Inst. Mat. Mekh. UrO RAN 23(1), 88–102 (2017)

    Article  Google Scholar 

  22. Gorokhovik, V.V., Trafimovich, M.A.: On methods for converting exhausters of positively homogeneous functions. Optimization 65(3), 589–608 (2016)

    Article  MathSciNet  Google Scholar 

  23. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  24. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Birkhauser, Basel (1983)

    MATH  Google Scholar 

  25. Gorokhovik, V.V., Zorko, O.I.: Piecewise affine functions and polyhedral sets. Optimization 31(2), 209–221 (1994)

    Article  MathSciNet  Google Scholar 

  26. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer, New York (2012)

    Book  Google Scholar 

  27. Gorokhovik, V.V., Trafimovich, M.A.: Positively homogeneous functions revisited. J. Optim. Theory Appl. 171(2), 481–503 (2016)

    Article  MathSciNet  Google Scholar 

  28. Melzer, D.: On the expressibility of piecewise linear continuous functions as the difference of two piecewise linear convex functions. In: Demyanov, V.F., Dixon, L.C.W. (eds.) Quasidifferential Calculus. Mathematical Programming Studies, vol. 29, pp. 118–134. North-Holland, Amsterdam (1986)

    Chapter  Google Scholar 

  29. Roshchina, V.: Reducing exhausters. J. Optim. Theory Appl. 136(2), 261–273 (2008)

    Article  MathSciNet  Google Scholar 

  30. Grzybowski, J., Pallaschke, D., Urbański, R.: Reduction of finite exhausters. J. Glob. Optim. 46(4), 589–601 (2010)

    Article  MathSciNet  Google Scholar 

  31. Grzybowski, J., Küçük, M., Küçük, Y., Urbański, R.: On minimal representations by a family of sublinear functions. J. Glob. Optim. 61(2), 279–289 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by the Belarussian State Research Programm (Grant “Convergence – 1.04.01”). The authors thank the anonymous referees for careful and thorough reading of the paper and their valuable comments which led to an improved presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin V. Gorokhovik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorokhovik, V.V., Trafimovich, M. Saddle representations of positively homogeneous functions by linear functions. Optim Lett 12, 1971–1980 (2018). https://doi.org/10.1007/s11590-018-1260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1260-z

Keywords

Navigation