Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An exact solution framework for the minimum cost dominating tree problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The minimum cost dominating tree problem is a recently introduced NP-hard problem, which consists of finding a tree of minimal cost in a given graph, such that for every node of the graph, the node or one of its neighbours is in the tree. We present an exact solution framework combining a primal–dual heuristic with a branch-and-cut approach based on a transformation of the problem into a Steiner arborescence problem with an additional constraint. The effectiveness of our approach is evaluated on testbeds proposed in literature containing instances with up to 500 nodes. Our framework manages to solve all but four instances from literature to proven optimality within 3 h (most of them in a few seconds). We provide optimal solution values for 69 instances from literature for which the optimal solution was previously unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adasme, P., Andrade, R., Leung, J., Lisser, A.: Models for minimum cost dominating trees. Electron. Notes Discrete Math. 52, 101–107 (2016)

    Article  MathSciNet  Google Scholar 

  2. Chaurasia, S., Singh, A.: A hybrid heuristic for dominating tree problem. Soft Comput. 20(1), 377–397 (2016)

    Article  Google Scholar 

  3. Chen, S., Ljubić, I., Raghavan, S.: The regenerator location problem. Networks 55(3), 205–220 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Dražić, Z., Čangalović, M., Kovačević-Vujčić, V.: A metaheuristic approach to the dominating tree problem. Optim. Lett. 11(6), 1155–1167 (2016)

    Article  MathSciNet  Google Scholar 

  5. Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: a node-based model for uniform edge costs. Math. Program. Comput. 9(2), 203–229 (2017)

    Article  MathSciNet  Google Scholar 

  6. Fujie, T.: An exact algorithm for the maximum leaf spanning tree problem. Comput. Oper. Res. 30(13), 1931–1944 (2003)

    Article  MathSciNet  Google Scholar 

  7. Leitner, M., Ljubić, I., Salazar-González, J.-J., Sinnl, M.: An algorithmic framework for the exact solution of tree-star problems. Eur. J. Oper. Res. 261(1), 54–66 (2017)

    Article  MathSciNet  Google Scholar 

  8. Leitner, M., Ljubić, I., Luipersbeck, M., Sinnl, M.: A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems. INFORMS J. Comput. (to appear)

  9. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. Math. Program. Ser. B 105, 427–449 (2006)

    Article  MathSciNet  Google Scholar 

  10. Ore, O.: Theory of Graphs, Volume 38 of Colloquium Publications, 1st edn. American Mathematical Society, Providence (1962)

    Google Scholar 

  11. Polzin, T., Daneshmand, S.: Improved algorithms for the Steiner problem in networks. Discrete Appl. Math. 112(1), 263–300 (2001)

    Article  MathSciNet  Google Scholar 

  12. Shin, I., Shen, Y., Thai, M.: On approximation of dominating tree in wireless sensor networks. Optim. Lett. 4(3), 393–403 (2010)

    Article  MathSciNet  Google Scholar 

  13. Sundar, S., Singh, A.: New heuristic approaches for the dominating tree problem. Appl. Soft Comput. 13(12), 4695–4703 (2013)

    Article  Google Scholar 

  14. Thai, M., Wang, F., Liu, D., Zhu, S., Du, D.: Connected dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mob. Comput. 6(7), 721–730 (2007)

    Article  Google Scholar 

  15. Thai, M., Tiwari, R., Du, D.: On construction of virtual backbone in wireless ad hoc networks with unidirectional links. IEEE Trans. Mob. Comput. 7(9), 1098–1109 (2008)

    Article  Google Scholar 

  16. Wong, R.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28(3), 271–287 (1984)

    Article  MathSciNet  Google Scholar 

  17. Zhang, N., Shin, I., Li, B., Boyaci, C., Tiwari, R., Thai, M.: New approximation for minimum-weight routing backbone in wireless sensor network. In: Li, Y., Huynh, D., Das, S., Du, D. (eds.) Proceedings of WASA 2008, Volume 5258 of LNCS, pp. 96–108. Springer, Berlin (2008)

    Google Scholar 

Download references

Acknowledgements

E.A.-M. acknowledges the support of the Chilean Council of Scientific and Technological Research, CONICYT, through the Grant FONDECYT N.1180670 and through the Complex Engineering Systems Institute (ICM-FIC:P-05-004-F, CONICYT:FB0816). The research of M.S. was supported by the Austrian Research Fund (FWF, Project P 26755-N19). M.L. acknowledges the support of the University of Vienna through the uni:docs fellowship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Álvarez-Miranda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Miranda, E., Luipersbeck, M. & Sinnl, M. An exact solution framework for the minimum cost dominating tree problem. Optim Lett 12, 1669–1681 (2018). https://doi.org/10.1007/s11590-018-1252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1252-z

Keywords

Navigation