Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The TV advertisements scheduling problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A TV channel has a single advertisement break of duration h and a convex continuous function \(f{:}\;[0,h] \rightarrow \mathbb {R}^+\) representing the TV rating points within the advertisement break. Given n TV advertisements of different durations \(p_j\) that sum up to h, and willingness to pay coefficients \(w_j\), the objective is to schedule them on the TV break in order to maximize the total revenue of the TV channel \(\sum _j w_j \int _{c_j-p_j}^{c_j} f(t) dt,\) where \([c_j-p_j,c_j)\) is the broadcast time interval of TV advertisement j. We show that this problem is NP-hard and propose a fully polynomial time approximation scheme, using a special dominance property of an optimal schedule and the technique of K-approximation sets and functions introduced by Halman et al. (Math Oper Res 34:674–685, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bansal, N., Dürr, C., Thang, N.K., Vásquez, Ó.C.: The local–global conjecture for scheduling with non-linear cost. J. Sched. 20(3), 239–254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, N., Pruhs, K.: The geometry of scheduling. SIAM J. Comput. 43(5), 1684–1698 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benoist, T., Bourreau, E., Rottembourg, B.: The TV-break packing problem. Eur. J. Oper. Res. 176(3), 1371–1386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollapragada, S., Bussieck, M.R., Mallik, S.: Scheduling commercial videotapes in broadcast television. Oper. Res. 52(5), 679–689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollapragada, S., Cheng, H., Phillips, M., Garbiras, M., Scholes, M., Gibbs, T., Humphreville, M.: NBC’s optimization systems increase revenues and productivity. Interfaces 32(1), 47–60 (2002)

    Article  Google Scholar 

  6. Bollapragada, S., Garbiras, M.: Scheduling commercials on broadcast television. Oper. Res. 52(3), 337–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheung, M., Shmoys, D.: A primal–dual approximation algorithm for min-sum single-machine scheduling problems. In: Proceedings of the 14th International Workshop APPROX and 15th International Workshop RANDOM, pp. 135–146 (2011)

  8. Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella, M., Stougie, L.: Universal sequencing on an unreliable machine. SIAM J. Comput. 41(3), 565–586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. García-Villoria, A., Salhi, S.: Scheduling commercial advertisements for television. Int. J. Prod. Res. (2014). https://doi.org/10.1080/00207543.2014.951095

    Article  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Ghassemi, F., Tari, Alaei, R.: Scheduling TV commercials using genetic algorithms. Int. J. Prod. Res. 51(16), 4921–4929 (2013)

    Article  Google Scholar 

  12. Halman, N.: A deterministic fully polynomial time approximation scheme for counting integer knapsack solutions made easy. Theor. Comput. Sci. 645, 41–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Halman, N., Klabjan, D., Li, C.-L., Orlin, J., Simchi-Levi, D.: Fully polynomial time approximation schemes for stochastic dynamic programs. SIAM J. Discrete Math. 28, 1725–1796 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halman, N., Klabjan, D., Mostagir, M., Orlin, J., Simchi-Levi, D.: A fully polynomial time approximation scheme for single-item stochastic inventory control with discrete demand. Math. Oper. Res. 34, 674–685 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halman, N., Nannicini, G., Orlin, J.: A computationally efficient FPTAS for convex stochastic dynamic programs. SIAM J. Optim. 25, 317–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Halman, N., Orlin, J.B., Simchi-Levi, D.: Approximating the nonlinear newsvendor and single-item stochastic lot-sizing problems when data is given by an oracle. Oper. Res. 60, 429–446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Höhn, W., Jacobs, T.: On the performance of Smith’s rule in single-machine scheduling with nonlinear cost. ACM Trans. Algorithms 11(4), 25:1–25:30 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Höhn, W., Mestre, J., Wiese, A.: How unsplittable-flow-covering helps scheduling with job-dependent cost functions. In: International Colloquium on Automata, Languages, and Programming. Springer, pp. 625–636 (2014)

  19. Mao, J., Shi, J., Wanitwattanakosol, J., Watanabe, S.: An ACO-based algorithm for optimising the revenue of TV advertisement using credit information. Int. J. Revenue Manag. 5(2), 109–120 (2011)

    Article  Google Scholar 

  20. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying speed. In: Proceedings of the 40th International Colloquium on Automata, Languages and Programming (ICALP), pp. 745–756 (2013)

  21. Mestre, J., Verschae, J.: A 4-approximation for scheduling on a single machine with general cost function. CoRR, arXiv:1403.0298 (2014)

  22. Mihiotis, A., Tsakiris, I.: A mathematical programming study of advertising allocation problem. Appl. Math. Comput. 148(2), 373–379 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Pereira, J., Vásquez, O.C.: The single machine weighted mean squared deviation problem. Eur. J. Oper. Res. 261(2), 515–529 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vásquez, Ó.C.: On the complexity of the single machine scheduling problem minimizing total weighted delay penalty. Oper. Res. Lett. 42(5), 343–347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vásquez, O.C.: For the airplane refueling problem local precedence implies global precedence. Optim. Lett. 9(4), 663–675 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Velusamy, S., Gopal, L., Bhatnagar, S., Varadarajan, S.: An efficient ad recommendation system for TV programs. Multimed. Syst. 14(2), 73–87 (2008)

    Article  Google Scholar 

  27. Zhang, X.: Mathematical models for the television advertising allocation problem. Int. J. Oper. Res. 1(3), 302–322 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for partial support from the following sources: FONDECYT Grant 11140566 (F. Díaz-Núñez and Ó. C. Vásquez), Universidad de Santiago, Proyecto DICYT 061817VP (Ó. C. Vásquez) and Israel Science Foundation Grant 399/17 (N. Halman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Óscar C. Vásquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Núñez, F., Halman, N. & Vásquez, Ó.C. The TV advertisements scheduling problem. Optim Lett 13, 81–94 (2019). https://doi.org/10.1007/s11590-018-1251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1251-0

Keywords

Navigation