Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Controlled dynamic model with boundary-value problem of minimizing a sensitivity function

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We formulate a controlled dynamic model with a boundary-value problem of minimizing a sensitivity function under constraints. Solution of boundary-value problem implicitly defines a terminal condition for the dynamic model. In the model, a unique trajectory corresponds to each control taken from a bounded set. The problem is to select the control such that the corresponding trajectory takes an object from an arbitrary initial state to the terminal state. In this paper, the dynamic model is treated as a problem of stabilization, and the terminal state of the object is interpreted as a state of equilibrium. If under the influence of external disturbances the object loses equilibrium then this object is returned back by selecting the appropriate control. A saddle-point method for solving problem is proposed. We prove its convergence to solution of the problem in all the variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Hereinafter, the index “1” next to a variable means belonging to the finite-dimensional space of the right-hand end of a time interval \([t_0,t_1]\).

  2. The method is called “dual”, since iterations run only in dual variables \(p_1\) and \(\psi (\cdot )\), while the optimization is done by primal variables \(y_1,x_1,x(\cdot )\).

  3. \(|u(t)|=\sqrt{\sum \limits _{i=1}^r u_i^2(t)}= \sqrt{\langle u(t),u(t)\rangle },\; t \in [t_0,t_1], \quad \Vert u(\cdot )\Vert = \sqrt{\int _{t_0}^{t_1}|u(t)|^2dt}\).

References

  1. Antipin, A.S.: Saddle problem and optimization problem as an integrated system. Proc. Steklov Inst. Math. 263(suppl 2), 3–14 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antipin, A.S.: Extra-proximal methods for solving two-person nonzero-sum games. Math. Program. Ser. B 120, 147–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antipin, A.S.: Sensibility function as convolution of system of optimization problems. In: Chinchuluun, A., Pardalos, P., Enkhbat, R. (eds.) Optimization and Optimal Control, pp. 1–22. Springer, Berlin (2010)

    Google Scholar 

  4. Antipin, A.S.: Two-person game with Nash equilibrium in optimal control problems. Optim. Lett. 6(7), 1349–1378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antipin, A.S.: Terminal control of boundary models. Comput. Math. Math. Phys. 54(2), 257–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Antipin, A.S., Golikov, A.I., Khoroshilova, E.V.: Sensitivity function: properties and applications. Comput. Math. Math. Phys. 51(12), 2000–2016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Antipin, A.S., Khoroshilova, E.V.: On boundary-value problem for terminal control with quadratic criterion of quality. Izvestiya IGU. Matematika. 8, 7–28 (2014). (in Russian)

    MATH  Google Scholar 

  8. Antipin, A.S., Khoroshilova, E.V.: Linear programming and dynamics. Ural Math. J. 1(1), 3–19 (2015)

    Article  MATH  Google Scholar 

  9. Antipin, A.S., Khoroshilova, E.V.: Optimal control with connected initial and terminal conditions. Proc. Steklov Inst. Math. 289(1 Suppl), 9–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Antipin, A.S., Khoroshilova, E.V.: Multicriteria boundary-value problem in dynamics. Trudy instituta Matematiki i mekhaniki UrO RAN. 21(3), 20–29 (2015). (in Russian)

    MathSciNet  Google Scholar 

  11. Antipin, A.S., Khoroshilova, E.V.: Saddle-point approach to solving problem of optimal control with fixed ends. J. Glob. Optim. 64(3), 3–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Antipin, A.S., Khoroshilova, E.V.: On methods of terminal control with boundary-value problems: Lagrange approach. In: Optimization and Applications in Control and Data Sciences, pp. 17–49. Springer (2016)

  13. Antipin, A.S., Vasilieva, O.O.: Dynamic method of multipliers in terminal control. Comput. Math. Math. Phys. 55(5), 766–787 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clempner, J., Poznyak, A.S.: Using the extraproximal method for computing the shotest-path mixed Lyapunov equilibrium in Stackelberg security games. Int. J. Artif. Intell. Tools 11, 3–23 (2014)

    Google Scholar 

  15. Elster, K.H., Schauble, M., Donath, G.: Einfurung in die Nichtlineare Optimirung. BSB B.G. Teubner, Leipzig (1977)

    MATH  Google Scholar 

  16. Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. NAUKA, Moscow (1974). (in Russian)

    Google Scholar 

  17. Khoroshilova, E.V.: Extragradient method of optimal control with terminal constraints. Autom. Remote Control 73(3), 517–531 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khoroshilova, E.V.: Extragradient-type method for optimal control problem with linear constraints and convex objective function. Optim. Lett. 7(6), 1193–1214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis, 7th edn. FIZMATLIT, Moscow (2009)

    Google Scholar 

  20. Osmolovskii, N.P.: Sufficient quadratic conditions of extremum for discontinuous controls in optimal control problems with mixed constraints. J. Math. Sci. 173(1), 1–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pardalos, P.M., Enkhbat, R., Chinchuluun, A. (eds.): Pareto Optimality Game Theory and Equilibria. Springer, Berlin (2008)

    MATH  Google Scholar 

  22. Pytlak, R.: Numerical Methods for Optimal Control Problems with State Constraints. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  23. Rockafellar, R.T., Wets, R.J.-B.: Variational Analisis. Springer, Berlin (1998). (Printed in Germany)

    Book  MATH  Google Scholar 

  24. Trejo, K.K., Clempner, J.B., Poznyak, A.S.: A Stackelberg security game with random strategic based on the extraproximal theoretic approach. Eng. Appl. Artif. Intell. 37, 145–153 (2015)

    Article  Google Scholar 

  25. Vasiliev, F.P.: Optimization Methods. In 2 Books, 1053. Moscow Center for Continuous Mathematical Education (MCCME), Moscow (2011)

  26. Vasiliev, F.P., Khoroshilova, E.V., Antipin, A.S.: Regularized extragradient method of finding a saddle point in optimal control problem. Trudy Instituta matematiki i mekhaniki UrO RAN 17(1), 27–37 (2011). (in Russian)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The reported study was supported by the Russian Science Foundation (Research Project 17-11-01353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Antipin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipin, A., Khoroshilova, E. Controlled dynamic model with boundary-value problem of minimizing a sensitivity function. Optim Lett 13, 451–473 (2019). https://doi.org/10.1007/s11590-017-1216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1216-8

Keywords

Navigation