Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the on-line maintenance scheduling problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A machine instantly serves requests but needs to undergo maintenance after serving a maximum of L requests. We want to maximize the number of requests served. In the on-line version, we prove that serving L requests before placing a maintenance is 0.5-competitive and is best possible for deterministic algorithms. We describe a 0.585-competitive randomized algorithm and show an upper bound of \(2L/(3L-1)\). We also analyze the empirical performance of various on-line algorithms on specific arrival distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ascheuer, N., Grötschel, M., Krumke, S.O., Rambau, J.: Combinatorial online optimization. In: Operations Research Proceedings 1998, pp. 21–37. Springer (1999)

  3. Babaioff, M., Immorlica, N., Kleinberg. R.: Matroids, secretary problems, and online mechanisms. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 434–443. Society for Industrial and Applied Mathematics (2007)

  4. Ball, M.O., Queyranne, M.: Toward robust revenue management: competitive analysis of online booking. Oper. Res. 57(4), 950–963 (2009)

    Article  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Robust optimization-methodology and applications. Math. Program. 92(3), 453–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization (1997)

  7. Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approximation techniques for average completion time scheduling. SIAM J. Comput. 31(1), 146–166 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic matching: beating 1-1/e. In: Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pp 117–126. IEEE (2009)

  9. Fotakis, D.: On the competitive ratio for online facility location. Algorithmica 50(1), 1–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Imreh, C.: Online scheduling with general machine cost functions. Discrete Appl. Math. 157(9), 2070–2077 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M., Vazirani, U.V, Vazirani, V.V.: An optimal algorithm for on-line bipartite matching. In: Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, pp. 352–358. ACM (1990)

  12. Meyerson, A.: Online facility location. In: Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pp. 426–431. IEEE (2001)

  13. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, vol. 9. SIAM (2009)

Download references

Acknowledgements

Second author supported by FSR Incoming Post-doctoral Fellowship of the Catholic University of Louvain (UCL), funded by the French Community of Belgium. This text presents research results of the P7/36 PAI project COMEX, part of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister Office, Science Policy Programming. The scientific responsibility is assumed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Van Vyve.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsaei, F., Telha, C. & Van Vyve, M. On the on-line maintenance scheduling problem. Optim Lett 12, 387–397 (2018). https://doi.org/10.1007/s11590-017-1198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1198-6

Keywords

Navigation