Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Positive definite and Gram tensor complementarity problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Given a continuous function and , the non-linear complementarity problem \(\text{ NCP }(g,q)\) is to find a vector such that

$$\begin{aligned} x \ge 0,~~y:=g(x) +q\ge 0~~\text{ and }~~x^Ty=0. \end{aligned}$$

We say that g has the Globally Uniquely Solvable (\(\text{ GUS }\))-property if \(\text{ NCP }(g,q)\) has a unique solution for all and C-property if \(\mathrm{NCP}(g,q)\) has a convex solution set for all . In this paper, we find a class of non-linear functions that have the \(\text{ GUS }\)-property and C-property. These functions are constructed by some special tensors which are positive semidefinite. We call these tensors as Gram tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatia, R.: Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)

    Google Scholar 

  2. Chang, K.C., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  5. Ding, W., Qi, L., Wei, Y.: M-tensors and nonsingular M-tensors. Linear Algebra Appl. 439, 3264–3278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, W., Luo, Z., Qi, L.: P-Tensors, P\(_0\)-Tensors, and Tensor Complementarity Problem. arXiv:1507.06731 (2015)

  7. Facchinei, F., Pang, J.-S.: Finite Dimensional Variational Inequality and Complementarity Problems, vol. I and II. Springer, Berlin (2003)

    MATH  Google Scholar 

  8. Gowda, M.S., Luo, Z., Qi, L., Xiu, N.: Z-tensors and complementarity problems. arXiv:1510.07933 (2015)

  9. Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. Ser. B 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508–531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karamardian, S.: An existence theorem for the complementarity problem. J. Optim. Theory Appl. 19, 227–232 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luo, Z., Qi, L.: Completely positive tensors: properties, easily checkable subclasses, and tractable relaxations. SIAM J. Matrix Anal. Appl. 37, 1675–1698 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. (2015). doi:10.1007/s11590-016-1013-9

  14. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Palpandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, R., Palpandi, K. Positive definite and Gram tensor complementarity problems. Optim Lett 12, 639–648 (2018). https://doi.org/10.1007/s11590-017-1188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1188-8

Keywords

Navigation