Abstract
Given a continuous function and , the non-linear complementarity problem \(\text{ NCP }(g,q)\) is to find a vector such that
We say that g has the Globally Uniquely Solvable (\(\text{ GUS }\))-property if \(\text{ NCP }(g,q)\) has a unique solution for all and C-property if \(\mathrm{NCP}(g,q)\) has a convex solution set for all . In this paper, we find a class of non-linear functions that have the \(\text{ GUS }\)-property and C-property. These functions are constructed by some special tensors which are positive semidefinite. We call these tensors as Gram tensors.
Similar content being viewed by others
References
Bhatia, R.: Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)
Chang, K.C., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)
Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)
Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)
Ding, W., Qi, L., Wei, Y.: M-tensors and nonsingular M-tensors. Linear Algebra Appl. 439, 3264–3278 (2013)
Ding, W., Luo, Z., Qi, L.: P-Tensors, P\(_0\)-Tensors, and Tensor Complementarity Problem. arXiv:1507.06731 (2015)
Facchinei, F., Pang, J.-S.: Finite Dimensional Variational Inequality and Complementarity Problems, vol. I and II. Springer, Berlin (2003)
Gowda, M.S., Luo, Z., Qi, L., Xiu, N.: Z-tensors and complementarity problems. arXiv:1510.07933 (2015)
Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. Ser. B 48, 161–220 (1990)
Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508–531 (2013)
Karamardian, S.: An existence theorem for the complementarity problem. J. Optim. Theory Appl. 19, 227–232 (1976)
Luo, Z., Qi, L.: Completely positive tensors: properties, easily checkable subclasses, and tractable relaxations. SIAM J. Matrix Anal. Appl. 37, 1675–1698 (2016)
Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. (2015). doi:10.1007/s11590-016-1013-9
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Balaji, R., Palpandi, K. Positive definite and Gram tensor complementarity problems. Optim Lett 12, 639–648 (2018). https://doi.org/10.1007/s11590-017-1188-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-017-1188-8