Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Characterizations via linear scalarization of minimal and properly minimal elements

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this note we provide sufficient conditions that guarantee representations via linear scalarization of different types of properly minimal elements of a given set by means of a new separation statement for closed convex cones. Moreover, we also give conditions that ensure the proper minimality (in different senses) of the minimal points with respect to a convex ordering cone of a set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, C.D., Florenzano, M., Martins-da-Rocha, V.F., Tourky, R.: Equilibrium analysis in financial markets with countably many securities. J. Math. Econ. 40, 683–699 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borwein, J.M.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boţ, R.I.: Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin (2010)

    Google Scholar 

  4. Boţ, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61, 35–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boţ, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139, 67–84 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boţ, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boţ, R.I., Grad, S.-M., Wanka, G.: Classical linear vector optimization duality revisited. Optim. Lett. 6, 199–210 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boţ, R.I., Grad, S.-M., Wanka, G.: Duality in Vector Optimization. Springer, Berlin (2009)

    MATH  Google Scholar 

  9. Boţ, R.I., Wanka, G.: An alternative formulation for a new closed cone constraint qualification. Nonlinear Anal. Theory Methods Appl 64, 1367–1381 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Breckner, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 1, 109–127 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Gong, X.H.: Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior. J. Math. Anal. Appl. 307, 12–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grad, S.-M.: On gauge functions for convex cones with possibly empty interiors. J. Convex Anal. 24, 519–524 (2017)

  13. Grad, S.-M.: Vector Optimization and Monotone Operators via Convex Duality. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  14. Grad, S.-M., Pop, E.L.: Vector duality for convex vector optimization problems by means of the quasi interior of the ordering cone. Optimization 63, 21–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Isermann, H.: Proper efficiency and the linear vector maximum problem. Oper. Res. 22, 189–191 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jahn, J.: Vector optimization—theory, applications, and extensions. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  17. Lehmann, R., Oettli, W.: The theorem of the alternative, the key-theorem, and the vector-maximum problem. Math. Program. 8, 332–344 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vogel, W.: Vektoroptimierung in Produkträumen. Verlag Anton Hain, Meisenheim am Glan (1977)

    MATH  Google Scholar 

  19. Tanaka, T., Kuroiwa, D.: The convexity of \(A\) and \(B\) assures \({{\rm int}} A +B={{\rm int}} (A+B)\). Appl. Math. Lett. 6, 83–86 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  21. Zălinescu, C.: On the use of the quasi-relative interior in optimization. Optimization 64, 1795–1823 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zălinescu, C.: On three open problems related to quasi relative interior. J. Convex Anal. 22, 641–645 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to J. Jahn for pointing out the references [17, 18] and to two anonymous referees for comments and suggestions that have significantly improved the quality of the note, one of them providing several alternative proofs of the contained results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin-Mihai Grad.

Additional information

Research partially supported by DFG (German Research Foundation), Project WA 922/8-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grad, SM. Characterizations via linear scalarization of minimal and properly minimal elements. Optim Lett 12, 915–922 (2018). https://doi.org/10.1007/s11590-017-1164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1164-3

Keywords

Navigation