Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On gap functions for nonsmooth multiobjective optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A set-valued gap function, \(\phi \), existing in the literature for smooth and nonsmooth multiobjective optimization problems is dealt with. It is known that \(0\in \phi (x^*)\) is a sufficient condition for efficiency of a feasible solution \(x^*\), while the converse does not hold. In the current work, the converse of this assertion is proved for properly efficient solutions. Afterwards, to avoid the complexities of set-valued maps some new single-valued gap functions, for nonsmooth multiobjective optimization problems with locally Lipschitz data are introduced. Important properties of the new gap functions are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altangerel, L., Boţ, R.I., Wanka, G.: Conjugate duality in vector optimization and some applications to the vector variational inequality. J. Math. Anal. Appl. 329, 1010–1035 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altangerel, L.: A duality approach to gap functions for variational inequalities and equilibrium problems, PhD Dissertation, Faculty of Mathematics, Chemnitz University of Technology, (2006)

  3. Altangerel, L., Boţ, R.I., Wanka, G.: On gap functions for equilibrium problems via Fenchel duality. Pac. J. Optim. 2, 667–678 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Altangerel, L., Boţ, R.I., Wanka, G.: On the construction of gap functions for variational inequalities via conjugate duality. Asia Pac. J. Oper. Res. 24, 353–371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auslender, A.: Optimisation: Méthods Numériques. Masson, Paris (1976)

    MATH  Google Scholar 

  6. Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham, Heidelberg (2014)

    Book  MATH  Google Scholar 

  7. Benson, H.P.: Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26, 569–580 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benson, H.P.: Optimization over the efficient set. J. Math. Anal. Appl. 98, 562–580 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boţ, R.I., Grad, S.M., Wanka, G.: Duality in Vector Optimization. Springer, Berlin, Heidelberg

  10. Chen, C.Y., Goh, C.J., Yang, X.Q.: The gap function of a convex multicriteria optimization problem. Eur. J. Oper. Res. 111, 142–151 (1998)

    Article  MATH  Google Scholar 

  11. Clarke, F.H.: Functional Analysis. Calculus of Variations and Optimal Control. Springer, London (2013)

    Book  MATH  Google Scholar 

  12. Daniilidis, A., Hadjisavvas, N.: Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions. J. Optim. Theory Appl. 102, 525–536 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  14. Flores-Bazán, F., Mastroeni, G.: Characterizing FJ and KKT conditions in nonconvex mathematical programming with applications. SIAM J. Optim. 25, 647–676 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geoffrion, A.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hearn, D.W.: The gap function of a convex program. Oper. Res. Lett. 1, 67–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hurwicz, L.: Programming in linear spaces. In: Arrow, K.J., Hurwicz, L., Uzawa, H. (eds.) Studies in Linear and Non-linear Programming, pp. 38–102. Stanford University Press, Stanford (1958)

    Google Scholar 

  18. Jourani, A.: Metric regularity and second-order necessary optimality conditions for minimization problems under inclusion constraints. J. Glob. Optim. 81, 97–120 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Kuhn, H., Tucker, A.: Nonlinear programing. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley, California (1951)

  20. Lasserre, J.B.: On representation of the feasible set in convex optimization. Optim. Lett. 4, 1–5 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mastroeni, G.: Gap functions for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mirzaee, H., Soleimani-damaneh, M.: Optimality, duality and gap function for quasi variational inequality problems. ESAIM Control Optim. Calc. Var. 23, 297–308 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  24. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  25. Sarabi, M.E., Soleimani-damaneh, M.: Revisiting the function of a multicriteria optimization problem. Int. J. Comput. Math. 86, 860–863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Soleimani-damaneh, M.: Characterization of nonsmooth quasiconvex and pseudoconvex functions. J. Math. Anal. Appl. 330, 2168–2176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Soleimani-damaneh, M.: The gap function for optimization problems in Banach spaces. Nonlinear Anal. 69, 716–723 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soleimani-damaneh, M.: Nonsmooth optimization using Mordukhovich’s subdifferential. SIAM J. Control Optim. 48, 3403–3432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yamamoto, Y.: Optimization over the efficient set: overview. J. Glob. Optim. 22, 285–317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for helpful comments on the first version of the paper. The research of the last author was in part supported by a grant from IPM (No. 95260124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Soleimani-damaneh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caristi, G., Kanzi, N. & Soleimani-damaneh, M. On gap functions for nonsmooth multiobjective optimization problems. Optim Lett 12, 273–286 (2018). https://doi.org/10.1007/s11590-017-1110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1110-4

Keywords

Navigation