Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An interior penalty method for a finite-dimensional linear complementarity problem in financial engineering

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this work we study an interior penalty method for a finite-dimensional large-scale linear complementarity problem (LCP) arising often from the discretization of stochastic optimal problems in financial engineering. In this approach, we approximate the LCP by a nonlinear algebraic equation containing a penalty term linked to the logarithmic barrier function for constrained optimization problems. We show that the penalty equation has a solution and establish a convergence theory for the approximate solutions. A smooth Newton method is proposed for solving the penalty equation and properties of the Jacobian matrix in the Newton method have been investigated. Numerical experimental results using three non-trivial test examples are presented to demonstrate the rates of convergence, efficiency and usefulness of the method for solving practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angermann, L., Wang, S.: Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing. Numer. Math. 106, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A., Lions, J.L.: Applications of Variational Inequalities in Stochastic Control. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978)

    MATH  Google Scholar 

  3. Chen, W., Wang, S.: A penalty method for a fractional order parabolic variational inequality governing American put option valuation. Comput. Math. Appl. 67, 77–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Wang, S.: A finite difference method for pricing European and American options under a geometric Levy process. J. Ind. Manag. Optim. 11, 241–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courtadon, G.: A more accurate finite difference approximation for the valuation of options. J. Finan. Econ. Quant. Anal. 17, 697–703 (1982)

    Article  Google Scholar 

  6. Damgaard, A.: Computation of reservation prices of options with proportional transaction costs. J. Econ. Dyn. Control 30, 415–444 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daryina, A.N., Izmailov, A.F., Solodov, M.V.: A class of active-set Newton methods for mixed complementarity problems. SIAM J. Optim. 36, 409–429 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Davis, M.H.A., Zariphopoulou, T.: American Options and Transaction Fees. In: Davis M., Duffie, D., Fleming W.H., Shreve S. (eds.) Mathematical Finance. Springer-Verlag (1995)

  9. Duffy, D.: Finite Difference Methods in Financial Engineering–A Partial Differential Equation Approach. Wiley, Chichester (2006)

    Book  MATH  Google Scholar 

  10. Facchinei, F., Pang, J.S.: Finite-dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. I & II. Springer-Verlag, New York (2003)

    MATH  Google Scholar 

  11. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44, 525–597 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York (1984)

    Book  MATH  Google Scholar 

  14. Khaliq, A.Q.M., Voss, D.A., Kazmi, S.H.K.: A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach. J. Bank. Finan. 30, 489–502 (2006)

    Article  Google Scholar 

  15. Huang, C.C., Wang, S.: A power penalty approach to a nonlinear complementarity problem. Oper. Res. Lett. 38, 72–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, C.C., Wang, S.: A penalty method for a mixed nonlinear complementarity problem. Nonlinear Anal. 75, 588–597 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kanzow, C.: Global optimization techniques for mixed complementarity problems. J. Glob. Optim. 16, 1–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  19. Lesmana, D.C., Wang, S.: An upwind finite difference method for a nonlinear Black–Scholes equation governing European option valuation under transaction costs. Appl. Math. Comput. 219, 8811–8828 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Li, W., Wang, S.: Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. J. Ind. Manag. Optim. 9, 365–398 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, W., Wang, S.: A numerical method for pricing European options with proportional transaction costs. J. Glob. Optim. 60, 59–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, D., Fukushima, M.: Smoothing Newton and Quasi-Newton methods for mixed complementarity problems. Comput. Optim. Appl. 17, 203–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical solution of American option problems. J. Comp. Fin. 5, 69–97 (2001)

    Article  Google Scholar 

  24. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, New York, London (1970)

    MATH  Google Scholar 

  25. Potra, F.A., Ye, Y.: Interior-point methods for nonlinear complementarity problems. J. Optim. Theor. App. 88, 617–642 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Seydel, R.: Tools for Computational Finance, 5th edn. Springer Verlag, London (2012)

    Book  MATH  Google Scholar 

  27. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Engelwood Cliffs, NJ (1962)

    MATH  Google Scholar 

  28. Wang, S.: A novel fitted finite volume method for the Black–Scholes equation governing option pricing. IMA J. Numer. Anal. 24, 699–720 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, S.: A power penalty method for a finite-dimensional obstacle problem with derivative constraints. Optim. Lett. 8, 1799–1811 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, S.: A penalty approach to a discretized double obstacle problem with derivative constraints. J. Glob. Optim. 62, 775–790 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, S., Yang, X.Q.: A power penalty method for linear complementarity problems. Oper. Res. Lett. 36, 211–214 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, S., Yang, X.Q.: A power penalty method for a bounded nonlinear complementarity problem. Optimization 64, 2377–2394 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, S., Yang, X.Q., Teo, K.L.: Power penalty method for a linear complementarity problem arising from American option valuation. J. Optim. Theory App. 129, 227–254 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, S., Zhang, S., Fang, Z.: A superconvergent fitted finite volume method for Black–Scholes equations governing European and American option valuation. Numer. Partial Differ. Equ. 31, 1190–1208 (2015)

    Article  MATH  Google Scholar 

  35. Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford (1993)

    MATH  Google Scholar 

  36. Yamashita, M., Fukushima, M.: On stationary points of the implicit Lagrangian for nonlinear complementarity problems. J. Optim. Theory Appl. 84, 653–663 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, K., Wang, S.: Convergence property of an interior penalty approach to pricing American option. J. Ind. Manag. Optim. 7, 435–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, K., Wang, S.: Pricing American bond options using a penalty method. Automatica 48, 472–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Kai Zhang wishes to thank the supports from the Philosophy and Social Science Program of Guangdong Province (Grant No. GD13YYJ01) and the MOE Project of Key Research institute of Humanities and Social Sciences at Universities (Grant No. 14JJD790041). Project 11001178 partially supported by National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, K. An interior penalty method for a finite-dimensional linear complementarity problem in financial engineering. Optim Lett 12, 1161–1178 (2018). https://doi.org/10.1007/s11590-016-1050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1050-4

Keywords

Navigation