Abstract
The Newton method is one of the most used methods for solving nonlinear system of equations when the Jacobian matrix is nonsingular. The method converges to a solution with Q-order two for initial points sufficiently close to the solution. The method of Halley and the method of Chebyshev are among methods that have local and cubic rate of convergence. Combining these methods with a backtracking and curvilinear strategy for unconstrained optimization problems these methods have been shown to be globally convergent. The backtracking forces a strict decrease of the function of the unconstrained optimization problem. It is shown that no damping of the step in the backtracking routine is needed close to a strict local minimizer and the global method behaves as a local method. The local behavior for the unconstrained optimization problem is investigated by considering problems with two unknowns and it is shown that there are no significant differences in the region where the global method turn into a local method for second and third order methods. Further, the final steps to reach a predefined tolerance are investigated. It is shown that the region where the higher order methods terminate in one or two iteration is significantly larger than the corresponding region for Newton’s method.
Similar content being viewed by others
Notes
It is convenient in this section to let subscripts denote components or elements and parenthesized superscripts to denote iteration count.
References
Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–161 (2008)
Apostolopoulou, M.S., Sotiropoulos, D.G., Botsaris, C.A.: A curvilinear method based on minimal-memory BFGS updates. Appl. Math. Comput. 217(2), 882–892 (2010)
Babajee, D.K.R., Dauhoo, M.Z.: An analysis of the properties of the variants of Newtons method with third order convergence. Appl. Math. Comput. 183(1), 659–684 (2006)
Bader, B.W., Schnabel, R.B.: Curvilinear linesearch for tensor methods. SIAM J. Sci. Comput. 25(2), 604–622 (2003)
Buckley, A.R.: Test functions for unconstrained minimization. Technical Report 1989CS-3, Mathematics, Statistics and Computing Centre, Dalhousie University, Halifax (CDN) (1994) (an updated version)
Chen, D., Argyros, I.K., Qian, Q.S.: A note on the Halley method in Banach spaces. Appl. Math. Comput. 58, 215–224 (1993)
Cheng, S.H., Higham, N.J.: A modified Cholesky algorithm based on a symmetric indefinite factorization. SIAM J. Matrix Anal. Appl. 19(4), 1097–1110 (1998)
Conforti, D., Grandinetti, L., Musmanno, R.: A parallel tensor algorithm for nonlinear optimization. Optim. Methods Softw. 3, 125–142 (1994)
Conforti, D., Mancini, M.: A curvilinear search algorithm for unconstrained optimization by automatic differentiation. Optim. Methods Softw. 15(3–4), 283–297 (2001)
Conn, A.R., Gould, N.I.M., Lescrenier, M., Toint, Ph.L.: Performance of a multifrontal scheme for partially separable optimization. In Gomez, S., Hennart, J.P. (eds) Advances in Optimization and Numerical Analysis, Proceedings of the Sixth workshop on Optimization and Numerical Analysis, Oaxaca, Mexico, number 275 in Mathematics and its Applications Series, pp. 79–96. Kluwer Academic Publishers (1994)
Dennis, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs (1983)
Dixon, L.C.W., Price, R.C.: Numerical experience with the truncated Newton method for unconstrained optimization. J. Optim. Theory Appl. 56(2), 245–255 (1988)
Epureanu, B.I., Greenside, H.S.: Fractal basins of attraction associated with a damped Newton’s method. SIAM Rev. 40(1), 102–109 (1998)
Gill, P.E., Murray, W., Wright, M.H.: Practical optimization. Academic Press Inc., Waltham (1981)
Goldfarb, D.: Curvilinear path steplength algorithms for minimization which use directions of negative curvature. Math. Program. 18(1), 31–40 (1980)
Grandinetti, L.: Nonlinear optimization by a curvilinear path strategy. In: Thoft-Christensen, P. (ed.) System modelling and optimization. Lecture notes in control and information sciences, vol. 59, pp. 289–298. Springer, Berlin, Heidelberg (1984)
Grau-Sánchez, M., Gutiérrez, J.M.: Some variants of the Chebyshev-Halley family of methods with fifth order of convergence. Int. J. Comput. Math. 87(4), 818–833 (2010)
Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1989)
Gundersen, G.: Sparsity in higher-order methods for unconstrained optimization. Doctoral Thesis, Department of Informatics, University of Bergen (2008)
Gundersen, G., Steihaug, T.: On large-scale unconstrained optimization problems and higher order methods. Optim. Methods Softw. 25(3), 337–358 (2010)
Gutiérrez, J.M., Hernández, M.A.: An acceleration of Newton’s method: Super-Halley method. Appl. Math. Comput. 117(2), 223–239 (2001)
Kchouk, B., Dussault, J.-P.: The Chebyshev-Shamanskii method for solving systems of nonlinear equations. J. Optim. Theory Appl. 157(1), 148–167 (2013)
Lawrence, P.W., Corless, R.M., Jeffrey, D.J.: Algorithm 917: Complex double-precision evaluation of the Wright \(\omega \) function. ACM Trans. Math. Softw. (TOMS) 38(3), 20 (2012)
Leon, A.: A comparison among eight known optimizing procedures. In: Lavi, A. Vogl, T.P. (eds) Recent Advances in Optimizations Techniques, pp. 23–42. Wiley, New York (1966)
Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for truncated Newton methods in large scale unconstrained optimization. SIAM J. Optim. 8(4), 916–939 (1998)
McCormick, G.P.: A modification of Armijo’s step-size rule for negative curvature. Math. Program. 13(1), 111–115 (1977)
Mertvecova, M.A.: Analogue of the process of tangent hyperbolas for general functional equations (Russian). Doklady Akademii Nauk SSSR 88, 611–614 (1953)
Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)
Moré, J.J., Sorensen, D.C.: On the use of directions of negative curvature in a modified Newton method. Math. Program. 16(1), 1–20 (1979)
Nečepurenko, M.I.: On Čebyšev’s method for functional equations (Russian). Uspekhi Matem. Nauk 9(2(60)), 163–170 (1954)
Oren, S.S.: Self-scaling variable metric algorithms without line search for unconstrained minimization. Math. Comput. 27(124), 873–885 (1973)
Shen, C., Chen, X., Liang, Y.: A regularized Newton method for degenerate unconstrained optimization problems. Optim. Lett. 6(8), 1913–1933 (2012)
Spedicato, E., Huang, Z.: Numerical experience with Newton-like methods for nonlinear algebraic systems. Computing 58(1), 69–89 (1997)
Steihaug, T., Suleiman, S.: Rate of convergence of higher order methods. Appl. Numer. Math. 67, 230–242 (2013)
Steihaug, T., Suleiman, S.: Curvilinear search and higher order methods for unconstrained optimization. Submitted for possible publication for special issue of Computational Optimization and Applications (2014)
Toint, Ph.L.: Test problems for partially separable optimization and results for the routine PSPMIN. Technical Report 83/4, Department of Mathematics, Faculteés Universitaires de Namur, Namur, Belgium (1983)
Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)
Zhang, Y., Tapia, R., Velázquez, L.: On convergence of minimization methods: attraction, repulsion, and selection. J. Optim. Theory Appl. 107(3), 529–546 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Steihaug, T., Suleiman, S. On the final steps of Newton and higher order methods. Optim Lett 10, 401–416 (2016). https://doi.org/10.1007/s11590-015-0899-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-015-0899-y