Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Vector variational inequalities and vector optimization problems on Hadamard manifolds

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we introduce a Minty type vector variational inequality, a Stampacchia type vector variational inequality, and the weak forms of them, which are all defined by means of subdifferentials on Hadamard manifolds. We also study the equivalent relations between the vector variational inequalities and nonsmooth convex vector optimization problems. By using the equivalent relations and an analogous to KKM lemma, we give some existence theorems for weakly efficient solutions of convex vector optimization problems under relaxed compact assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Homidan, S., Ansari, Q.H.: Generalized Minty vector variational-like inequalities and vector optimization problems. J. Optim. Theory Appl. 144, 1–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ansari, Q.H., Yao, J.C. (eds.): Recent Developments in Vector Optimization. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Ansari, Q.H., Rezaei, M.: Generalized vector variational-like inequalities and vector optimization in Asplund spaces. Optimization 62, 721–734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azagra, D., Ferrera, J., Lopez-Mesas, F.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barani, A.: Generalized monotonicity and convexity for locally Lipschitz functions on Hadamard manifolds. Differ. Geom. Dyn. Syst. 15, 26–37 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64, 289–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chavel, I.: Riemannian Geometry—A Modern Introduction. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  8. Chen, G.Y., Craven, B.D.: Existence and continuity of solutions for vector optimization. J. Optim. Theory Appl. 81, 459–468 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colao, V., L\(\acute{o}\)pez, G., Marino, G., Martín-M\(\acute{a}\)rquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388, 61–77 (2012)

  10. Da Cruze, J.X., Neto, O.P., Ferreira, L., Lucambio P\(\acute{e}\)rez, R.: Monotone point-to-set vector fields. Balkan J. Geom. Appl. 5, 69–79 (2000)

  11. Ferreira, O.P., Lucambio P\(\acute{e}\)rez, R., N\(\acute{e}\)meth, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31, 133–151 (2005)

  12. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  14. Giannessi, F.: On Minty variational principle. In: Giannessi, F., Komlosi, S., Tapcsack, T. (eds.) New Trends in Mathematical Programming. Kluwer Academic Publishers, Dordrecht (1998)

    Chapter  Google Scholar 

  15. Giannessi, F.: Theorems of alternative, quadratic programs and complementary problems. In: Cottle, R.W., Giannessi, F., Lions, J.C. (eds.) Variational Inequality and Complementary Problems. Wiley and Sons, New York (1980)

    Google Scholar 

  16. Hosseini, S., Pouryayevali, M.R.: Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds. Nonlinear Anal. TMA 74, 3884–3895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klingenberg, W.: A Course in Differential Geometry. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  18. Konnov, I.V., Yao, J.C.: On the generalized vector variational inequality problem. J. Math. Anal. Appl. 206, 42–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, G.M.: On relations between vector variational inequality and vector optimization problem. In: Yang, X.Q., et al. (eds.) Progress in Optimization. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  20. Lee, G.M., Kim, D.S.: Existence of solutions for vector optimization problems. J. Math. Anal. Appl. 220, 90–98 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, G.M., Kim, D.S., Lee, B.S., Yen, N.D.: Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal. TMA 34, 745–765 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C., L\(\acute{o}\)pez, G., Martín-M\(\acute{a}\)rquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)

  23. Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50, 2486–2514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X.B., Huang, N.J.: Generalized vector quasi-equilibrium problems on Hadamard manifolds. Optim. Lett. 9, 155–170 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mishra, S.K., Wang, S.Y.: Vector variational-like inequalities and nonsmooth vector optimization problems. Nonlinear Anal. TMA 64, 1939–1945 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. N\(\acute{e}\)meth, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. TMA 52, 1491–1498 (2003)

  28. N\(\acute{e}\)meth, S.Z., Monotone vector fields. Publ. Math. 54, 437–449 (1999)

  29. Rapsc\(\acute{a}k\), T.: Smooth Nonlinear Optimization in \(R^n\). Kluwer Academic Publishers, Dordrecht (1997)

  30. Th\(\ddot{a}\)melt, W.: Directional derivatives and generalized gradients on manifolds. Optimization 25, 97–115 (1992)

  31. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  32. Zhou, L.W., Huang, N.J.: Existence of solutions for vector optimization on Hadamard manifolds. J. Optim. Theory Appl. 157, 44–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, L.W., Huang, N.J.: Generalized KKM theorems on Hadamard manifolds with applications. http://www.paper.edu.cn/index.php/default/releasepaper/content/200906-669 (2009)

Download references

Acknowledgments

The authors are grateful to the editor and the referees for their valuable comments and suggestions. This work was supported by the National Natural Science Foundation of China (11171237, 11471230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-jing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sl., Huang, Nj. Vector variational inequalities and vector optimization problems on Hadamard manifolds. Optim Lett 10, 753–767 (2016). https://doi.org/10.1007/s11590-015-0896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0896-1

Keywords

Navigation