Abstract
\(\ell _0\)-penalized problems arise in a number of applications in engineering, machine learning and statistics, and, in the last decades, the design of algorithms for these problems has attracted the interest of many researchers. In this paper, we are concerned with the definition of a first-order method for the solution of \(\ell _0\)-penalized problems with simple constraints. We use a reduced dimension Frank–Wolfe algorithm Rinaldi (Optim Methods Softw, 26, 2011) and show that the subproblem related to the computation of the Frank–Wolfe direction can be solved analytically at least for some sets of simple constraints. This gives us a very easy to implement and quite general tool for dealing with \(\ell _0\)-penalized problems. The proposed method is then applied to the numerical solution of two practical optimization problems, namely, the Sparse Principal Component Analysis and the Sparse Reconstruction of Noisy Signals. In both cases, the reported numerical performances and comparisons with state-of-the-art solvers show the efficiency of the proposed method.
Similar content being viewed by others
References
Afonso, M., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)
Afonso, M., Bioucas-Dias, J., Figueiredo, M.: An augmented lagrangian based method for the constrained formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681–695 (2011)
Beck, A., Teboulle, M.: A fast iterative shrinkage-threshold algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(2), 183–202 (2009)
Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Progr. 74, 121–140 (1996)
Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)
Cadima, J., Jolliffe, I.: Loadings and correlations in the interpretation of principal components. J. Appl. Stat. 22, 203–214 (1995)
Candès, E., Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6(2), 227–254 (2006)
Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition basis pursuit. SIAM Rev. 43, 129–159 (2001)
D’Aspremont, A., Bach, F.R., El Ghaoui, L.: Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res. 9, 1269–1294 (2008)
D’Aspremont, A., El Ghaoui, L., Jordan, N.I., Lanckriet, G.R.G.: A direct formulation for sparce pca using semidefinite programming. SIAM Rev. 49(3), 434–448 (2007)
Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)
Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist. Q. 3, 95–110 (1956)
Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for l1-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)
Hale, E.T., Yin, W., Zhang, Y.: http://www.caam.rice.edu/~optimization/l1/fpc/, (2012)
Hein, M., Bühler, T.: An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse pca. In: Advances in Neural Information Processing Systems, pp. 847–855 (2010)
Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the lasso. J. Comput. Graph. Stat. 12, 531–547 (2003)
Journeé, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 11, 517–553 (2010)
Kim, S.-J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale l1-regularized least squares. IEEE J. Select. Topics Signal Process. 1(4), 606–617 (2007)
Luss, R., Teboulle, M.: Conditional gradient algorithms for rank-one matrix approximations with a sparsity constraint. SIAM Rev. 55(1), 65–98 (2013)
Mangasarian, O.L.: Machine learning via polyhedral concave minimization. In: Fischer, H., Riedmueller, B., Schaeffler, S. (eds.) Applied Mathematics and Parallel Computing Festschrift for Klaus Ritter, pp. 175–188. Physica-Verlag, Germany (1996)
Moghaddam, B., Weiss, Y., Avidan, S.: Generalized spectral bounds for sparse lda. In: ICML ’06 Proceedings of the 23rd International Conference on Machine Learning, pp. 641–648 (2006)
Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)
Rinaldi, F.: Concave programming for finding sparse solutions to problems with convex constraints. Optim. Methods Softw. 26(6), 971–992 (2011)
Rinaldi, F., Schoen, F., Sciandrone, M.: Concave programming for minimizing the zero-norm over polyhedral sets. Comput. Optim. Appl. 46(3), 467–486 (2010)
Riva, A., Carpentier, A.-S., Torrésani, B., Hénaut, A.: Comments on selected fundamental aspects of microarray analysis. Comput. Biol. Chem. 29(5), 319–336 (2005)
Shen, H., Huang, J.Z.: Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. 99(6), 1015–1034 (2008)
Sriperumbudur, B.K., Torres, D.A., Lanckriet, G.R.G.: Sparse eigen methods by dc programming. In: Proceedings of the 24th International Conference on Machine Learning, pp. 831–838 (2007)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)
Weston, J., Elisseef, A., Schölkopf, B.: Use of the zero norm with linear models and kernel methods. J. Mach. Learn. Res. 3, 1439–1461 (2003)
Zhang, Z., Zha, H., Simon, H.: Low rank approximations with sparse factors i: basic algorithms and error analysis. SIAM J. Matrix Anal. Appl. 23(3), 706–727 (2002)
Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liuzzi, G., Rinaldi, F. Solving \(\ell _0\)-penalized problems with simple constraints via the Frank–Wolfe reduced dimension method. Optim Lett 9, 57–74 (2015). https://doi.org/10.1007/s11590-014-0757-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-014-0757-3