Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we consider an optimal zero-forcing beamformer design problem in multi-user multiple-input multiple-output broadcast channel. The minimum user rate is maximized subject to zero-forcing constraints and power constraint on each base station antenna array element. The natural formulation leads to a nonconvex optimization problem. This problem is shown to be equivalent to a convex optimization problem with linear objective function, linear equality and inequality constraints and quadratic inequality constraints. Here, the indirect elimination method is applied to reduce the convex optimization problem into an equivalent convex optimization problem of lower dimension with only inequality constraints. The primal-dual interior point method is utilized to develop an effective algorithm (in terms of computational efficiency) via solving the modified KKT equations with Newton method. Numerical simulations are carried out. Compared to algorithms based on a trust region interior point method and sequential quadratic programming method, it is observed that the method proposed is much superior in terms of computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Caire, G., Shamai (Shitz), S.: On the achievable throughput of multiatenna Gaussian broadcast channel. IEEE Trans. Inf. Theory. 49, 1691–1706 (2003)

    Article  MATH  Google Scholar 

  2. Wiesel, A., Eldar, Y.C., Shamai (Shitz), S.: Linear precoding via conic optimizaiton for fixed MIMO receivers. IEEE Trans. Signal Process. 54, 161–176 (2006)

    Article  Google Scholar 

  3. Joham, M., Utschick, W., Nossek, S.: Linear transmit processing in MIMO communications system. IEEE Trans. Signal Process. 53(8), 2700–2712 (2005)

    Article  MathSciNet  Google Scholar 

  4. Peel, B.C., UtschickHochwald, B.M., Swindlehurst, A.L.: A vector-pertubation technique for near-capacity multiantenna multiuser communication-part I: channel inversion and regularization. IEEE Trans. Commun. 53, 195–202 (2005)

    Article  Google Scholar 

  5. Sung, H., Lee, S.R., Lee, I.: Genearlized channel inversion methods for multiuser MIMO systems. IEEE Trans. Commun. 57, 3489–3499 (2009)

    Article  Google Scholar 

  6. Spencer, Q.H., Swindlehurst, A.L., Haardt, M.: Zero forcing methods for downlink spatial multiplexing in multiuser MIMO chanels. IEEE Trans. Signal Process. 52(2), 461–471 (2004)

    Article  MathSciNet  Google Scholar 

  7. Choi, L.U., Murch, R.D.: A transmit prepocessing technique for multiuser MIMO systems using a decomposion approach. IEEE Trans. Wirel. Commun. 3(1), 20–24 (2004)

    Article  Google Scholar 

  8. Udupa, P.S., Lehnert, J.S.: Optimizing zero-forcing precoders for MIMO broadcast systems. IEEE Trans. Commun. 55(8), 1516–1524 (2007)

    Article  Google Scholar 

  9. Wiesel, A., Eldar, Y.C., Shamai (Shitz), S.: Zero-forcing precoding and generalized inverses. IEEE Trans. Signal Process. 56(9), 4409–4418 (2008)

    Article  MathSciNet  Google Scholar 

  10. Lee, S.R., Kim, J.S., Moon, S.H., Kong, H.B., Lee, I.: Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric. IEEE Trans. Wirel. Commun. 12(1), 228–236 (2013)

    Article  Google Scholar 

  11. Karakayali, K., Yates, R., Foschini, G., Valenzuela, R.: Optimal zero-forcing beamforming with per-antenna power constraints. In: Proceedings of the IEEE international symposium on information theory. Nice, France, pp. 101–105 (2007)

  12. Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach for Optimal Control Problems. Longman Scientific and Technical, New York (1991)

    Google Scholar 

  13. Boyd, S., Vandenberghe, L.: Covex Optimization. Cambrige University Press, New York (2004)

    Google Scholar 

  14. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-Scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107(3), 391–408 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Australia Research Council and a grant from the National Natural Science Foundation of China (No. 11171079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Dam, H.H., Cantoni, A. et al. A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints. Optim Lett 8, 1829–1843 (2014). https://doi.org/10.1007/s11590-013-0673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-013-0673-y

Keywords

Navigation