Abstract
Löwner’s operator in Euclidean Jordan algebras, defined via the spectral decomposition of the elements of a scalar function, has been widely used in various optimization problems over Euclidean Jordan algebras. In this note, we shall show that Löwner’s operator in Euclidean Jordan algebras is Hölder continuous if and only if the underlying scalar function is Hölder continuous. Such a property will be useful in designing solution methods for symmetric cone programming and symmetric cone complementarity problem.
Similar content being viewed by others
References
Baes M.: Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras. Linear Algebra Appl. 422, 664–700 (2007)
Braun H., Koecher M.: Jordan-Algebren. Springer, New York (1996)
Chang Y.L., Chen J.-S.: The Hölder continuity of vector-valued function associated with second-order cone. Pac. J. Optim. 8, 135–141 (2012)
Chen J.-S., Chen X., Tseng P.: Analysis of nonsmooth vector-valued functions associated with second-order cones. Math. Program. 101, 95–117 (2004)
Chen X., Qi H., Tseng P.: Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidenite complementarity problems. SIAM J. Optim. 13, 960–985 (2003)
Faraut J., Korányi A.: Analysis on Sysmetric Cones Oxford Mathematical Monographs. Oxford University Press, New York (1994)
Huang Z.H., Ni T.: Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl. 45, 557–579 (2010)
Koecher, M.: The minnesota notes on Jordan algebras and their applications. Springer, Berlin (1999) (edited and annotated by A. Brieg and S. Walcher)
Kong, L.C., Tunçel, L., Xiu, N.H.: Monotonicity of Löwner operators and its applications to symmetric cone complementarity problems. Math. Program. (2012, to appear). doi:10.1007/s10107-010-0432-0
Korányi A.: Monotone functions on formally real Jordan algebras. Math. Ann. 269, 3–76 (1984)
Lewis A.S.: Convex analysis on Hermitian matrices. SIAM J. Optim. 6, 164–177 (1996)
Lewis A.S.: Derivatives of spectral functions. Math. Oper. Res. 21, 576–588 (1996)
Löwner, K.: Über monotone matrixfunktionen. Mathematische Zeitschrift 38, 177–216 (1934)
Lu N., Huang Z.H., Han J.Y.: Properties of a class of nonlinear transformations over Euclidean Jordan algebras with applications to complementarity problems. Numer. Funct. Anal. Optim. 30, 799–821 (2009)
Schmieta S.H., Alizadeh F.: Extension of prime-dual interior point algorithms to symmetric cones. Math. Program. Ser. A 96, 409–438 (2003)
Sun D., Sun J.: Löwner’s operator and spectral functions in Euclidean Jordan algebras. Math. Oper. Res. 33, 421–445 (2008)
Tao J., Gowda M.S.: Some P-properties for nonlinear transformulation on Euclidean Jordan algebras. Math. Oper. Res. 30, 985–1004 (2005)
Wihler T.: On the Hölder continuity of matrix functions for normal matrices. J. Inequal. Pure Appl. Math. 10, 1–5 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is partially supported by the National Natural Science Foundation of China (Grant No. 10871144 and 11171252).
Rights and permissions
About this article
Cite this article
Lu, N., Huang, ZH. The Hölder continuity of Löwner’s operator in Euclidean Jordan algebras. Optim Lett 7, 1691–1699 (2013). https://doi.org/10.1007/s11590-012-0515-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-012-0515-3