Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Absolute value equation solution via dual complementarity

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

By utilizing a dual complementarity condition, we propose an iterative method for solving the NP-hard absolute value equation (AVE): Ax − |x| = b, where A is an n × n square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving a succession of linear programs. The algorithm was tested on 500 consecutively generated random solvable instances of the AVE with n = 10, 50, 100, 500 and 1,000. The algorithm solved 90.2 % of the test problems to an accuracy of 10−8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung S.-J.: NP-completeness of the linear complementarity problem. J. Optim. Theory Appl. 60, 393–399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cottle R.W., Dantzig G.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cottle R.W., Pang J.-S., Stone R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  4. Hu S.-L., Huang Z.-H.: A note on absolute equations. Optim. Lett. 4(3), 417–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User’s Manual, 2003. http://www.ilog.com/products/cplex/

  6. Mangasarian O.L.: Linear complementarity problems solvable by a single linear program. Math. Program. 10, 263–270 (1976)

    Article  MathSciNet  Google Scholar 

  7. Mangasarian, O.L.: Absolute value equation solution via concave minimization. Optim. Lett. 1(1), 3–8 (2007). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-02.pdf

  8. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-04.ps

  9. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Technical Report 08-01, Data Mining Institute, Computer Sciences Department, University of Wisconsin (2008). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/08-01.pdf . Optim. Lett. 3(1), 101–108 (2009). Online version: http://www.springerlink.com/content/c076875254r7tn38/

  10. Mangasarian, O.L.: Primal–dual bilinear programming solution of the absolute value equation. Technical report, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin (2011). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/11-01.pdf. Optimization Lett. (to appear)

  11. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419, 359–367 (2006). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-06.pdf

    Google Scholar 

  12. MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760 (1994–2006). http://www.mathworks.com

  13. Prokopyev O.A.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rohn, J.: A theorem of the alternatives for the equation A x + B|x| = b. Linear Multilinear Algebra 52(6), 421–426 (2004). http://www.cs.cas.cz/rohn/publist/alternatives.pdf

  15. Rohn J.: An algorithm for solving the absolute value equation. Electron. J. Linear Algebra 18, 589–599 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Rohn J.: On unique solvability of the absolute value equation. Optim. Lett. 3, 603–606 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rohn J.: A residual existence theorem for linear equations. Optim. Lett. 4(2), 287–292 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rohn, J.: An algorithm for computing all solutions of an absolute value equation. Optim. Lett. (2011, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olvi L. Mangasarian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangasarian, O.L. Absolute value equation solution via dual complementarity. Optim Lett 7, 625–630 (2013). https://doi.org/10.1007/s11590-012-0469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0469-5

Keywords

Navigation