Abstract
By utilizing a dual complementarity condition, we propose an iterative method for solving the NP-hard absolute value equation (AVE): Ax − |x| = b, where A is an n × n square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving a succession of linear programs. The algorithm was tested on 500 consecutively generated random solvable instances of the AVE with n = 10, 50, 100, 500 and 1,000. The algorithm solved 90.2 % of the test problems to an accuracy of 10−8.
Similar content being viewed by others
References
Chung S.-J.: NP-completeness of the linear complementarity problem. J. Optim. Theory Appl. 60, 393–399 (1989)
Cottle R.W., Dantzig G.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968)
Cottle R.W., Pang J.-S., Stone R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)
Hu S.-L., Huang Z.-H.: A note on absolute equations. Optim. Lett. 4(3), 417–424 (2010)
ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User’s Manual, 2003. http://www.ilog.com/products/cplex/
Mangasarian O.L.: Linear complementarity problems solvable by a single linear program. Math. Program. 10, 263–270 (1976)
Mangasarian, O.L.: Absolute value equation solution via concave minimization. Optim. Lett. 1(1), 3–8 (2007). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-02.pdf
Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-04.ps
Mangasarian, O.L.: A generalized Newton method for absolute value equations. Technical Report 08-01, Data Mining Institute, Computer Sciences Department, University of Wisconsin (2008). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/08-01.pdf . Optim. Lett. 3(1), 101–108 (2009). Online version: http://www.springerlink.com/content/c076875254r7tn38/
Mangasarian, O.L.: Primal–dual bilinear programming solution of the absolute value equation. Technical report, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin (2011). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/11-01.pdf. Optimization Lett. (to appear)
Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419, 359–367 (2006). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-06.pdf
MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760 (1994–2006). http://www.mathworks.com
Prokopyev O.A.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)
Rohn, J.: A theorem of the alternatives for the equation A x + B|x| = b. Linear Multilinear Algebra 52(6), 421–426 (2004). http://www.cs.cas.cz/rohn/publist/alternatives.pdf
Rohn J.: An algorithm for solving the absolute value equation. Electron. J. Linear Algebra 18, 589–599 (2009)
Rohn J.: On unique solvability of the absolute value equation. Optim. Lett. 3, 603–606 (2009)
Rohn J.: A residual existence theorem for linear equations. Optim. Lett. 4(2), 287–292 (2010)
Rohn, J.: An algorithm for computing all solutions of an absolute value equation. Optim. Lett. (2011, to appear)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mangasarian, O.L. Absolute value equation solution via dual complementarity. Optim Lett 7, 625–630 (2013). https://doi.org/10.1007/s11590-012-0469-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-012-0469-5