Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Conjugate gradient type methods for the nondifferentiable convex minimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We proposed implementable conjugate gradient type methods for solving a possibly nondifferentiable convex minimization problem by converting the original objective function to a once continuously differentiable function by way of the Moreau–Yosida regularization. The proposed methods make use of approximate function and gradient values of the Moreau–Yosida regularization instead of the corresponding exact values. The global convergence is established under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender A.: Numerical methods for nondifferentiable convex optimization. Math. Program. Study 30, 102–126 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagirov A.M., Ganjehlou A.N.: A quasisecant method for minimizing nonsmooth functions. Optim. Methods Softw. 25(1), 3–18 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bagirov, A.M., Ganjehlou, A.N.: A secant method for nonsmooth optimization (2009, submitted)

  4. Bagirov A.M., Karasozen B., Sezer M.: Discrete gradient method: a derivative free method for nonsmooth optimization. J. Optim. Theory Appl. 137, 317–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnans J.F., Gilbert J.C., Lemarechal C., Sagastizabal C.: A family of variable-metric proximal methods. Math. Program. 68, 15–47 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Burke J.V., Qian M.: On the superlinear convergence of the variable—metric proximal point- algorithm using Broyden and BFGS matrix secant updating. Math. Program. 88, 157–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burke I.V., Lewis A.S.: The speed of Shor’s r-algorithm. IMA J. Numer. Anal. 28, 711–720 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng W.Y.: A two term PRP based descent method. Numer. Funct. Anal. Optim. 28, 1217–1230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen X., Fukushima M.: Proximal quasi-Newton methods for nondifferentiable convex optimization. Math. Program. 85, 313–334 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Correa R., Lemarechal C.: Convergence of some algorithms for convex minimization. Math. Program. 62, 261–275 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai Z., Tian B.: Global convergence of some modified PRP nonlinear conjugate gradient methods. Optim. Lett. 5(4), 615–630 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Floudas C.A., Pardalos P.M.: Encyclopedia of Optimization. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  13. Fukushima M.: A descent algorithm for nonsmooth convex optimization. Math. Program. 30, 163–175 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fukushima M., Qi L.: A globally and superlinearly convergent algorithm for nonsmooth convex minimization. SIAM J. Optim. 6, 1106–1120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hager W.W., Zhang H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hager W.W., Zhang H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Hiriart-Urruty J.-B., Lemarechal C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)

    Google Scholar 

  18. Haarala N., Miettinen K., Mäkelä M.M.: Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math. Program. 109(1), 181–205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kappel F., Kuntsevich A.: An implementation of Shor’s r-algorithm. Comput. Optim. Appl. 15, 193–205 (2005)

    Article  MathSciNet  Google Scholar 

  20. Lemarechal, C., Sagastizabal, C.: An approach to variable-metric bundle methods. In: Henry, J., Yuvor, J.P. (eds.) Proceedings of the 16th IFIP-TC7 Conference on Systems Modelling and Optimization, pp. 144–162. Springer, New York (1994)

  21. Lemarechal C., Sagastizabal C.: Practical aspects of the Moreau–Yosida regularization, I: theoretical preliminaries. SIAM J. Optim. 7, 367–385 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, S., Wei, Z., Li, L.: A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization. Comput. Optim. Appl. (2010, published online)

  23. Lukšan L., Vlček J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83, 373–391 (1998)

    MATH  Google Scholar 

  24. Mifflin R.: A quasi-second-order proximal bundle algorithm. Math. Program. 73, 51–72 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Mifflin R., Sun D., Qi L.: Quasi-Newton bundle-type methods for nondifferentiable convex optimization. SIAM J. Optim. 8, 583–603 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mäkelä M.M., Neittaanmäki P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co., Singapore (1992)

    MATH  Google Scholar 

  27. Moreau J.J., Panagiotopoulos P.D., Strang G.: Topics in Nonsmooth Mechanics. Birkhäuser Verlag, Basel (1988)

    MATH  Google Scholar 

  28. Nesterov YU.: Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim. 16(1), 235–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nesterov YU.: Smooth minimization of nonsmooth functions. Math. Program. Ser. A 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Outrata J., KoÄŤvara M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Theory, Applications and Numerical Results. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  31. Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  32. Qi L., Chen X.: A preconditioned proximal Newton method for nondifferentiable convex optimization. Math. Program. 76, 411–429 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Rauf A.I., Fukushima M.: Global convergent BFGS method for nonsmooth convex optimization. J. Optim. Theory Appl. 104(3), 539–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sagara N., Fukushima M.: A trust region method for nonsmooth convex optimization. J. Ind. Manag. Optim. 1(2), 171–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shor N.Z.: Minimization Methods for Non-Differentiable Functions. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  36. Yu J., Vishwanathan S.V.N., Günter S., Schraudolph N.N.: A quasi-Newton approach to nonsmooth convex optimization in machine learning. J. Mach. Learn. Res. 11, 1145–1200 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Zhang L., Zhou W.J., Li D.H.: A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang L.: A new trust region algorithm for nonsmooth convex minimization. Appl. Math. Comput. 193, 135–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q. Conjugate gradient type methods for the nondifferentiable convex minimization. Optim Lett 7, 533–545 (2013). https://doi.org/10.1007/s11590-011-0437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0437-5

Keywords

Navigation